Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 146(9): 6061-6071, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385349

RESUMO

The highly reactive binuclear [Cu2O]2+ active site in copper zeolites activates the inert C-H bond of methane at low temperatures, offering a potential solution to reduce methane flaring and mitigate atmospheric methane levels. While substantial progress has been made in understanding the activation of methane by this core, one critical aspect, the active site's spin, has remained undetermined. In this study, we use variable-temperature, variable-field magnetic circular dichroism spectroscopy to define the ground state spin of the [Cu2O]2+ active sites in Cu-CHA and Cu-MFI. This novel approach allows for site-selective determination of the magnetic exchange coupling between the two copper centers of specific [Cu2O]2+ cores in a heterogeneous mixture, circumventing the drawbacks of bulk magnetic techniques. These experimental findings are coupled to density functional theory calculations to elucidate magnetostructural correlations in copper zeolites that are different from those of homogeneous binuclear Cu(II) complexes. The different spin states for the [Cu2O]2+ cores have different reactivities governed by how methane approaches the active site. This introduces a new understanding of zeolite topological control on active site reactivity.

2.
Eur J Clin Pharmacol ; 79(4): 513-522, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806970

RESUMO

PURPOSE: To develop a reliable assessment tool to monitor the quality of adverse drug reaction (ADR) reports and evaluate its performance within a quaternary hospital setting. METHODS: Adverse drug reactions report QUality Algorithm (AQUA-12) was developed by a multidisciplinary team with the expertise in the management of ADRs. The design was based on data elements required to establish medication causality. Inter-rater reliability of AQUA-12 was evaluated over three rounds in two phases: development and prospective evaluation phases, by independent assessors both internal and external to the institutional ADR review processes. The characteristics and quality of ADR reports were subsequently assessed, and potential factors contributing to low-quality reports were identified. RESULTS: A total of 70 ADR reports were assessed, 20 in development and 50 in evaluation phases. The inter-rater reliability of AQUA-12 was found to be excellent in all three rounds (Cronbach's alpha of  ≥ 0.9, p < 0.001 for all). Approximately one in five reports concerned immediate hypersensitivity reactions while delayed hypersensitivity reactions constituted 60% of all reactions. AQUA-12 identified 18 (25.7%) reports as 'low-quality' with a score of  < 10. Identification of suspected medications (37.1%), description of index ADR (27.1%), and key events (ADR narrative, 35.7%) were the top data elements incomplete or missing from all reports. Univariable analyses identified the severity of the reaction as a factor associated with low quality of reports (p = 0.008). CONCLUSIONS: AQUA-12 is a practical and highly reliable assessment tool that can be utilised in hospital settings to regularly monitor the completeness of ADR reports to guide quality improvement initiatives.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Melhoria de Qualidade , Humanos , Reprodutibilidade dos Testes , Sistemas de Notificação de Reações Adversas a Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Algoritmos
3.
Clin Case Rep ; 11(1): e6779, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36619485

RESUMO

Here we present a case of metastatic PNET which arose from an immature teratoma that was refractory to standard Ewing sarcoma chemotherapy. This PNET was determined to have elevated levels of ALK protein via IHC. The patient was treated with crizotinib on a palliative basis with a sustained response.

4.
Nature ; 613(7943): 287-291, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631647

RESUMO

Ammonia is a critical chemical in agriculture and industry that is produced on a massive scale via the Haber-Bosch process1. The environmental impact of this process, which uses methane as a fuel and feedstock for hydrogen, has motivated the need for more sustainable ammonia production2-5. However, many strategies that use renewable hydrogen are not compatible with existing methods for ammonia separation6-9. Given their high surface areas and structural and chemical versatility, metal-organic frameworks (MOFs) hold promise for ammonia separations, but most MOFs bind ammonia irreversibly or degrade on exposure to this corrosive gas10,11. Here we report a tunable three-dimensional framework that reversibly binds ammonia by cooperative insertion into its metal-carboxylate bonds to form a dense, one-dimensional coordination polymer. This unusual adsorption mechanism provides considerable intrinsic thermal management12, and, at high pressures and temperatures, cooperative ammonia uptake gives rise to large working capacities. The threshold pressure for ammonia adsorption can further be tuned by almost five orders of magnitude through simple synthetic modifications, pointing to a broader strategy for the development of energy-efficient ammonia adsorbents.

5.
Sports (Basel) ; 12(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38251283

RESUMO

Research into women's competitive soccer matches has shown distance and high-speed running (HSR) reductions over time, but the effects on some GPS-derived metrics have not been investigated. The purpose of this project was to examine the utility of common GPS metrics for indicating fatigue from the T-SAFT90 match simulation in collegiate soccer players. Unlike in competitive matches, changes to these metrics occurred as early as 15 min, with HSR, average and max speed, and speed intensity (SI) exhibiting significant declines. HSR and SI were even further decreased in later periods, with HSR lower in minutes 30-40 (T30-35 and T35-40) than T15-20 and lower in T70-85 than T45-60. SI showed a similar pattern of continued decline, reaching its lowest value in the last three time segments. Accelerations and decelerations were also decreased beginning at T15-20 and T20-25, respectively, but the fatigue index (FI), dynamic stress load (DSL), and step balance (SB) were unchanged. It can be concluded that in contrast to competitive matches where players can dictate their own intensity, a match simulation may result in a quicker onset of fatigue, but not all GPS-derived values change as expected in fatiguing environments. Coaches and sports scientists may use these findings to properly monitor fatigue in real time.

6.
Nat Commun ; 13(1): 6275, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271092

RESUMO

The use of iPSC derived brain organoid models to study neurodegenerative disease has been hampered by a lack of systems that accurately and expeditiously recapitulate pathogenesis in the context of neuron-glial interactions. Here we report development of a system, termed AstTau, which propagates toxic human tau oligomers in iPSC derived neuron-astrocyte assembloids. The AstTau system develops much of the neuronal and astrocytic pathology observed in tauopathies including misfolded, phosphorylated, oligomeric, and fibrillar tau, strong neurodegeneration, and reactive astrogliosis. Single cell transcriptomic profiling combined with immunochemistry characterizes a model system that can more closely recapitulate late-stage changes in adult neurodegeneration. The transcriptomic studies demonstrate striking changes in neuroinflammatory and heat shock protein (HSP) chaperone systems in the disease process. Treatment with the HSP90 inhibitor PU-H71 is used to address the putative dysfunctional HSP chaperone system and produces a strong reduction of pathology and neurodegeneration, highlighting the potential of AstTau as a rapid and reproducible tool for drug discovery.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Humanos , Astrócitos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doenças Neurodegenerativas/metabolismo , Transcriptoma , Tauopatias/metabolismo , Neurônios/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
7.
Chem Sci ; 13(35): 10216-10237, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277628

RESUMO

Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N2-selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O2-selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O2 production and utilization and advance new uses for O2. Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O2-selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O2, we survey the field of O2-selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O2 adsorption enthalpy, ΔH, is emphasized, and the free energy of O2 adsorption, ΔG, is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O2 binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal ΔG values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.

8.
Antimicrob Agents Chemother ; 66(11): e0095122, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36314868

RESUMO

LHF-535 is a small-molecule antiviral currently under development as a therapeutic option to treat Lassa fever and other viral hemorrhagic fevers of arenavirus origin. The human safety and pharmacokinetics of LHF-535 were evaluated in two phase 1 trials in healthy volunteers. The first study was a double-blind, single ascending dose trial that evaluated weight-based oral doses ranging from 0.3 mg/kg in the first cohort to 40 mg/kg in the last cohort. The second study was a double-blind, multiple ascending dose trial that evaluated a 14-day oral dosing regimen, with three sequential cohorts receiving fixed doses of 450, 900, or 1,125 mg per day; the third cohort (1,125 mg/day) received a higher (loading) dose of 2,250 mg for the first dose. Each cohort in both studies consisted of eight participants randomized to either placebo (n = 2) or LHF-535 (n = 6). LHF-535 was well tolerated in both studies. Treatment-emergent adverse events were more frequent in placebo recipients than in LHF-535 recipients in both studies. LHF-535 exhibited rapid absorption, a long half-life, and exposures predicted to suppress viral replication.


Assuntos
Febres Hemorrágicas Virais , Febre Lassa , Humanos , Adulto , Febre Lassa/tratamento farmacológico , Antivirais/efeitos adversos , Antivirais/farmacocinética , Método Duplo-Cego , Voluntários Saudáveis , Relação Dose-Resposta a Droga
9.
Chem Rev ; 122(14): 12207-12243, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35077641

RESUMO

Transition-metal-exchanged zeolites perform remarkable chemical reactions from low-temperature methane to methanol oxidation to selective reduction of NOx pollutants. As with metalloenzymes, metallozeolites have impressive reactivities that are controlled in part by interactions outside the immediate coordination sphere. These second-sphere effects include activating a metal site through enforcing an "entatic" state, controlling binding and access to the metal site with pockets and channels, and directing radical rebound vs cage escape. This review explores these effects with emphasis placed on but not limited to the selective oxidation of methane to methanol with a focus on copper and iron active sites, although other transition-metal-ion zeolite reactions are also explored. While the actual active-site geometric and electronic structures are different in the copper and iron metallozeolites compared to the metalloenzymes, their second-sphere interactions with the lattice or the protein environments are found to have strong parallels that contribute to their high activity and selectivity.


Assuntos
Metaloproteínas , Zeolitas , Catálise , Cobre/química , Ferro/química , Metano/química , Metanol/química , Zeolitas/química
10.
Science ; 373(6552): 327-331, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437151

RESUMO

Catalytic conversion of methane to methanol remains an economically tantalizing but fundamentally challenging goal. Current technologies based on zeolites deactivate too rapidly for practical application. We found that similar active sites hosted in different zeolite lattices can exhibit markedly different reactivity with methane, depending on the size of the zeolite pore apertures. Whereas zeolite with large pore apertures deactivates completely after a single turnover, 40% of active sites in zeolite with small pore apertures are regenerated, enabling a catalytic cycle. Detailed spectroscopic characterization of reaction intermediates and density functional theory calculations show that hindered diffusion through small pore apertures disfavors premature release of CH3 radicals from the active site after C-H activation, thereby promoting radical recombination to form methanol rather than deactivated Fe-OCH3 centers elsewhere in the lattice.

11.
Orthopedics ; 44(1): 54-57, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089338

RESUMO

Computer-assisted orthopedic surgery improves mechanical alignment and the accuracy of surgical cuts in the context of total knee arthroplasty (TKA). A simplified, navigation-enhanced instrumentation system was assessed to determine whether the same effects could be achieved with a less intrusive system. Two cohorts of surgeons (experienced and trainees) performed a series of TKA cuts using models with and without navigation-enhanced instrumentation. The accuracy of each system was determined via the rate of outliers, measured as any cut that deviated from the planned cut by more than 2° or 2 mm. The effect of experience level was limited, with only the outlier rate for tibial varus or valgus measurement showing a significant difference between user groups with conventional instrumentation (P=.004). The use of navigation-enhanced instrumentation significantly reduced the total outlier rate compared with conventional instrumentation from 35% to 4% for experienced users (P<.001) and from 34% to 10% for trainees (P<.001). These results suggest that navigation-enhanced instrumentation is a viable alternative to conventional instrumentation to reduce outlier rates and improve cut accuracy. This trial also showed that additional experience may not correlate with improved surgical accuracy. Outliers may not reflect individual surgical ability as much as limitations of the instrumentation or other unidentified factors. [Orthopedics. 2021;44(1):54-57.].


Assuntos
Artroplastia do Joelho/instrumentação , Cirurgia Assistida por Computador , Sistemas de Navegação Cirúrgica , Ferida Cirúrgica , Artroplastia do Joelho/normas , Competência Clínica , Humanos , Tíbia
12.
Dalton Trans ; 49(42): 14749-14757, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140781

RESUMO

The recent research developments on the active sites in Fe-zeolites for redox catalysis are discussed. Building on the characterisation of the α-Fe/α-O active sites in the beta and chabazite zeolites, we demonstrate a bottom-up approach to successfully understand and develop Fe-zeolite catalysts. We use the room temperature benzene to phenol reaction as a relevant example. We then suggest how the spectroscopic identification of other monomeric and dimeric iron sites could be tackled. The challenges in the characterisation of active sites and intermediates in NOX selective catalytic reduction catalysts and further development of catalysts for mild partial methane oxidation are briefly discussed.

13.
Sports (Basel) ; 7(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739531

RESUMO

Fatigue has been proposed to increase the risk of knee injury. This study tracked countermovement jump, knee isometric strength, and kinetics and kinematics in 8 female soccer players (experimental group) during an anticipated sidestep maneuver before and after two matches played over a 43-h period. Time points were: Before and after match 1 (T0 and T1), 12 h after the first match (T2), and immediately after the second match (T3). A control group participated only in practice sessions. Isometric knee extension strength decreased by 14.8% at T2 (p = 0.003), but knee flexion was not affected until T3, declining by 12.6% (p = 0.018). During the sidestep maneuver, knee joint degrees of flexion at initial contact was increased by 17.1% at T3, but maximum knee and hip angle at initial contact were unchanged. Peak resultant ground reaction force (GRF) increased by 12.6% (p = 0.047) at T3 (3.03 xBW) from 2.69 xBW at T0, while posterior GRF was significantly higher than T0 at all three subsequent time points (T1 = 0.82 ± 0.23 xBW, T2 = 0.87 ± 0.22 xBW, T3 = 0.89 ± 0.22 xBW). Anterior tibial shear force increased significantly (p = 0.020) at T3 (1.24 ± 0.12 xBW) compared to T1 (1.15 ± 0.13 xBW), an 8.8% increase. Lateral tibial shear force was significantly higher at both T1 (0.95 ± 0.20 xBW) and T3 (1.15 ± 0.38 xBW) compared to T0 (0.67 ± 0.25 xBW). These findings suggest that participation in a soccer match has significant effects on both physical performance parameters and kinetics/kinematics during a sidestep cut, but these can be more pronounced after a second match with short rest.

14.
Elife ; 82019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30883329

RESUMO

The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input.


Assuntos
Interneurônios/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Somatostatina/metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos , Optogenética
15.
J Comp Neurol ; 527(5): 916-941, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393861

RESUMO

The ventral tegmental area (VTA) is a heterogeneous midbrain structure that contains dopamine (DA), GABA, and glutamate neurons that project to many different brain regions. Here, we combined retrograde tracing with immunocytochemistry against tyrosine hydroxylase (TH) or glutamate decarboxylase (GAD) to systematically compare the proportion of dopaminergic and GABAergic VTA projections to 10 target nuclei: anterior cingulate, prelimbic, and infralimbic cortex; nucleus accumbens core, medial shell, and lateral shell; anterior and posterior basolateral amygdala; ventral pallidum; and periaqueductal gray. Overall, the non-dopaminergic component predominated VTA efferents, accounting for more than 50% of all projecting neurons to each region except the nucleus accumbens core. In addition, GABA neurons contributed no more than 20% to each projection, with the exception of the projection to the ventrolateral periaqueductal gray, where the GABAergic contribution approached 50%. Therefore, there is likely a significant glutamatergic component to many of the VTA's projections. We also found that VTA cell bodies retrogradely labeled from the various target brain regions had distinct distribution patterns within the VTA, including in the locations of DA and GABA neurons. Despite this patterned organization, VTA neurons comprising these different projections were intermingled and never limited to any one subregion. These anatomical results are consistent with the idea that VTA neurons participate in multiple distinct, parallel circuits that differentially contribute to motivation and reward. While attention has largely focused on VTA DA neurons, a better understanding of VTA subpopulations, especially the contribution of non-DA neurons to projections, will be critical for future work.


Assuntos
Neurônios Dopaminérgicos/citologia , Neurônios GABAérgicos/citologia , Área Tegmentar Ventral/citologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429333

RESUMO

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Assuntos
Benzeno/química , Ferro/química , Zeolitas/química , Catálise , Domínio Catalítico , Hidroxilação , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fenol/química
17.
J Am Chem Soc ; 140(38): 12021-12032, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30169036

RESUMO

The formation of single-site α-Fe in the CHA zeolite topology is demonstrated. The site is shown to be active in oxygen atom abstraction from N2O to form a highly reactive α-O, capable of methane activation at room temperature to form methanol. The methanol product can subsequently be desorbed by online steaming at 200 °C. For the intermediate steps of the reaction cycle, the evolution of the Fe active site is monitored by UV-vis-NIR and Mössbauer spectroscopy. A B3LYP-DFT model of the α-Fe site in CHA is constructed, and the ligand field transitions are calculated by CASPT2. The model is experimentally substantiated by the preferential formation of α-Fe over other Fe species, the requirement of paired framework aluminum and a MeOH/Fe ratio indicating a mononuclear active site. The simple CHA topology is shown to mitigate the heterogeneity of iron speciation found on other Fe-zeolites, with Fe2O3 being the only identifiable phase other than α-Fe formed in Fe-CHA. The α-Fe site is formed in the d6r composite building unit, which occurs frequently across synthetic and natural zeolites. Finally, through a comparison between α-Fe in Fe-CHA and Fe-*BEA, the topology's 6MR geometry is found to influence the structure, the ligand field, and consequently the spectroscopy of the α-Fe site in a predictable manner. Variations in zeolite topology can thus be used to rationally tune the active site properties.

18.
J Am Chem Soc ; 140(29): 9236-9243, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29954176

RESUMO

Two [Cu2O]2+ cores have been identified as the active sites of low temperature methane hydroxylation in the zeolite Cu-MOR. These cores have similar geometric and electronic structures, yet different reactivity with CH4: one reacts with a much lower activation enthalpy. In the present study, we couple experimental reactivity and spectroscopy studies to DFT calculations to arrive at structural models of the Cu-MOR active sites. We find that the more reactive core is located in a constricted region of the zeolite lattice. This leads to close van der Waals contact between the substrate and the zeolite lattice in the vicinity of the active site. The resulting enthalpy of substrate adsorption drives the subsequent H atom abstraction step-a manifestation of the "nest" effect seen in hydrocarbon cracking on acid zeolites. This defines a mechanism to tune the reactivity of metal active sites in microporous materials.

19.
Case Rep Gastrointest Med ; 2018: 9587536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666722

RESUMO

We report an uncommon case of deep infiltrating endometriosis of the colon presenting as iron deficiency anemia nine years after hysterectomy with bilateral salpingo-oophorectomy. The endometrial implant was found at the hepatic flexure, an exceedingly rare location for endometriosis invasion with no cases distinctly reported in the literature. Additionally, the presentation of gastrointestinal endometriosis as iron deficiency anemia is not well documented in the literature. Instead of surgery, we prescribed a novel medical therapeutic approach using conjugated estrogen-bazedoxifene to antagonize the proliferative effects of estrogen on endometrial tissue. After five months of therapy and repeat colonoscopy, no evidence of endometrial tissue remained in the hepatic flexure.

20.
Proc Natl Acad Sci U S A ; 115(18): 4565-4570, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29610304

RESUMO

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Assuntos
Ferro/química , Zeolitas/química , Zeolitas/metabolismo , Catálise , Domínio Catalítico , Hidroxilação/fisiologia , Ferro/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Espectrofotometria/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...