Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5669, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704607

RESUMO

Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Prognóstico , Inteligência Artificial , Metilação de DNA , Biópsia Líquida , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética
3.
Neuro Oncol ; 24(5): 683-693, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791428

RESUMO

BACKGROUND: With increasing molecular analyses of meningiomas, there is a need to harmonize language used to capture clinical data across centers to ensure that molecular alterations are appropriately linked to clinical variables of interest. Here the International Consortium on Meningiomas presents a set of core and supplemental meningioma-specific common data elements (CDEs) to facilitate comparative and pooled analyses. METHODS: The generation of CDEs followed the 4-phase process similar to other National Institute of Neurological Disorders and Stroke (NINDS) CDE projects: discovery, internal validation, external validation, and distribution. RESULTS: The CDEs were organized into patient- and tumor-level modules. In total, 17 core CDEs (10 patient level and 7 tumor level) as well as 14 supplemental CDEs (7 patient level and 7 tumor level) were defined and described. These CDEs are now made publicly available for dissemination and adoption. CONCLUSIONS: CDEs provide a framework for discussion in the neuro-oncology community that will facilitate data-sharing for collaborative research projects and aid in developing a common language for comparative and pooled analyses. The meningioma-specific CDEs presented here are intended to be dynamic parameters that evolve with time and The Consortium welcomes international feedback for further refinement and implementation of these CDEs.


Assuntos
Pesquisa Biomédica , Neoplasias Meníngeas , Meningioma , Consenso , Humanos , National Institute of Neurological Disorders and Stroke (USA) , Estados Unidos
4.
Neurooncol Adv ; 3(1): vdab088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409295

RESUMO

BACKGROUND: Although IDH-mutant tumors aggregate to the frontotemporal regions, the clustering pattern of IDH-wildtype tumors is less clear. As voxel-based lesion-symptom mapping (VLSM) has several limitations for solid lesion mapping, a new technique, whole-lesion phenotype analysis (WLPA), is developed. We utilize WLPA to assess spatial clustering of tumors with IDH mutation from The Cancer Genome Atlas and The Cancer Imaging Archive. METHODS: The degree of tumor clustering segmented from T1 weighted images is measured to every other tumor by a function of lesion similarity to each other via the Hausdorff distance. Each tumor is ranked according to the degree to which its neighboring tumors show identical phenotypes, and through a permutation technique, significant tumors are determined. VLSM was applied through a previously described method. RESULTS: A total of 244 patients of mixed-grade gliomas (WHO II-IV) are analyzed, of which 150 were IDH-wildtype and 139 were glioblastomas. VLSM identifies frontal lobe regions that are more likely associated with the presence of IDH mutation but no regions where IDH-wildtype was more likely to be present. WLPA identifies both IDH-mutant and -wildtype tumors exhibit statistically significant spatial clustering. CONCLUSION: WLPA may provide additional statistical power when compared with VLSM without making several potentially erroneous assumptions. WLPA identifies tumors most likely to exhibit particular phenotypes, rather than producing anatomical maps, and may be used in conjunction with VLSM to understand the relationship between tumor morphology and biologically relevant tumor phenotypes.

5.
Nov Approaches Cancer Study ; 6(3): 609-614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237758

RESUMO

In brain tumors, delivering nanoparticles across the blood-brain tumor barrier presents a major challenge. Dual mode magnetic resonance imaging and fluorescent imaging probes have been developed where relaxation based Gd-DOTA or ParaCEST agents and a Near-Infrared (NIR) fluorescent dye, DL680 were conjugated on the surface of dendrimer. The in vivo and ex vivo imaging of the dual-modality contrast agent showed excellent potential utility for identifying the location of glioma tumors. Systemic delivery of the subsequent nano-sized agent demonstrated glioma-specific accumulation, probably due to the enhanced permeability and retention effect. The biodistribution studies revealed the G5 agents have accumulated in the glioma tumor and the liver while a G3 agent only accumulated in the brain tumor but not in the liver or kidney. Hydrophobic drug molecules like Combrestatin A4 (CA4) or curcumin have also been conjugated with dendrimers that provided high aqueous solubility with improved therapeutic effect.

6.
Med Phys ; 47(9): 4064-4076, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32434276

RESUMO

PURPOSE: Magnetic resonance-guided radiation therapy (MRgRT) has shown great promise for localization and real-time tumor monitoring. However, to date, quantitative imaging has been limited for low field MRgRT. This work benchmarks quantitative T1, R2*, and Proton Density (PD)mapping in a phantom on a 0.35 T MR-linac and implements a novel acquisition method, STrategically Acquired Gradient Echo (STAGE). To further validate STAGE in a clinical setting, a pilot study was undertaken in a cohort of brain tumor patients to elucidate opportunities for longitudinal functional imaging with an MR-linac in the brain. METHODS: STAGE (two triple-echo gradient echo (GRE) acquisitions) was optimized for a 0.35T low-field MR-linac. Simulations were performed to choose two flip angles to optimize signal-to-noise ratio (SNR) and T1-mapping precision. Tradeoffs between SNR, scan time, and spatial resolution for whole-brain coverage were evaluated in healthy volunteers. Data were inputted into a STAGE processing pipeline to yield four qualitative images (T1-weighted, enhanced T1-weighted, proton-density (PD) weighted, and simulated FLuid-Attenuated Inversion Recovery (sFLAIR)), and three quantitative datasets (T1, PD, and R2*). A benchmarking ISMRM/NIST phantom consisting of vials with variable NiCl2 and MnCl2 concentrations was scanned using variable flip angles (VFA) (2-60 degrees) and inversion recovery (IR) methods at 0.35 T. STAGE and VFA T1 values of vials were compared to IR T1 values. As measures of agreement with reference values and repeatability, relative error (RE) and coefficient of variability (CV) were calculated, respectively, for quantitative MR values within the phantom vials (spheres). To demonstrate feasibility, longitudinal STAGE data (pretreatment, weekly, and ~ 2 months post-treatment) were acquired in an IRB-approved pilot study of brain tumor cases via the generation of temporal and differential quantitative MRI maps. RESULTS: In the phantom, RE of measured VFA T1 and STAGE relative to IR reference values were 7.0 ± 2.5% and 9.5 ± 2.2% respectively. RE for the PD vials was 8.1 ± 6.8% and CV for phantom R2* measurements was 10.1 ± 9.9%. Simulations and volunteer experiments yielded final STAGE parameters of FA = 50°/10°, 1 × 1 × 3 mm3 resolution, TR = 40 ms, TE = 5/20/34 ms in 10 min (64 slices). In the pilot study of brain tumor patients, differential maps for R2* and T1 maps were sensitive to local tumor changes and appeared similar to 3 T follow-up MRI datasets. CONCLUSION: Quantitative T1, R2*, and PD mapping are promising at 0.35 T agreeing well with reference data. STAGE phantom data offer quantitative representations comparable to traditional methods in a fraction of the acquisition time. Initial feasibility of implementing STAGE at 0.35 T in a patient brain tumor cohort suggests that detectable changes can be observed over time. With confirmation in a larger cohort, results may be implemented to identify areas of recurrence and facilitate adaptive radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Imagens de Fantasmas , Projetos Piloto , Reprodutibilidade dos Testes
7.
Curr Oncol Rep ; 22(5): 45, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32297007

RESUMO

PURPOSE OF REVIEW: Real-world data (RWD) applications in healthcare that support learning health systems and pragmatic clinical trials are gaining momentum, largely due to legislation supporting real-world evidence (RWE) for drug approvals. Clinical notes are thought to be the cornerstone of RWD applications, particularly for conditions with limited effective treatments, extrapolation of treatments from other conditions, or heterogenous disease biology and clinical phenotypes. RECENT FINDINGS: Here, we discuss current issues in applying RWD captured at the point-of-care and provide a framework for clinicians to engage in RWD collection. To achieve clinically meaningful results, RWD must be reliably captured using consistent terminology in the description of our patients. RWD complements traditional clinical trials and research by informing the generalizability of results, generating new hypotheses, and creating a large data network for scientific discovery. Effective clinician engagement in the development of RWD applications is necessary for continued progress in the field.


Assuntos
Conjuntos de Dados como Assunto , Aprovação de Drogas , Registros Eletrônicos de Saúde , Sistemas Automatizados de Assistência Junto ao Leito , Ensaios Clínicos como Assunto , Humanos , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...