Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 15(6): 85, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144047

RESUMO

INTRODUCTION: Triterpene saponins are important bioactive plant natural products found in many plant families including the Leguminosae. OBJECTIVES: We characterize two Medicago truncatula cytochrome P450 enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in vitro and in planta evidence. METHODS: UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with significant differential saponin content in the root and/or aerial tissues were selected, and correlated gene expression profiling was performed. RESULTS: Correlation analyses between gene expression and saponin accumulation revealed high correlations between saponin content with gene expression of ß-amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene silencing in M. truncatula hairy roots, which revealed a significant reduction of 2ß-hydroxylated sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed significant increases of oleanolic acid, 2ß-hydroxyoleanolic acid, hederagenin and total saponin levels. CONCLUSIONS: The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase and MtCYP72A67 is a 2ß-hydroxylase, both of which function during the early steps of triterpene-oleanate sapogenin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sapogeninas/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Front Genet ; 8: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270831

RESUMO

Oilseed rape (Brassica napus) is an economically important oil crop, yet the genetic architecture of its complex traits remain largely unknown. Here, genome-wide association study was conducted for eight yield-related traits to dissect the genetic architecture of additive, dominance, epistasis, and their environment interaction. Additionally, the optimal genotype combination and the breeding value of superior line, superior hybrid and existing best line in mapping population were predicted for each trait in two environments based on the predicted genotypic effects. As a result, 17 quantitative trait SNPs (QTSs) were identified significantly for target traits with total heritability varied from 58.47 to 87.98%, most of which were contributed by dominance, epistasis, and environment-specific effects. The results indicated that non-additive effects were large contributions to heritability and epistasis, and also noted that environment interactions were important variants for oilseed breeding. Our study facilitates the understanding of genetic basis of rapeseed yield trait, helps to accelerate rapeseed breading, and also offers a roadmap for precision plant breeding via marker-assisted selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...