RESUMO
While Alzheimer's disease (AD) diagnosis, management, and care have become priorities for healthcare providers and researcher's worldwide due to rapid population aging, epidemiologic surveillance efforts are currently limited by costly, invasive diagnostic procedures, particularly in low to middle income countries (LMIC). In recent years, wastewater-based epidemiology (WBE) has emerged as a promising tool for public health assessment through detection and quantification of specific biomarkers in wastewater, but applications for non-infectious diseases such as AD remain limited. This early review seeks to summarize AD-related biomarkers and urine and other peripheral biofluids and discuss their potential integration to WBE platforms to guide the first prospective efforts in the field. Promising results have been reported in clinical settings, indicating the potential of amyloid ß, tau, neural thread protein, long non-coding RNAs, oxidative stress markers and other dysregulated metabolites for AD diagnosis, but questions regarding their concentration and stability in wastewater and the correlation between clinical levels and sewage circulation must be addressed in future studies before comprehensive WBE systems can be developed.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Estudos Prospectivos , BiomarcadoresRESUMO
OBJECTIVE: Evaluate the effectiveness of firefighter exposure reduction interventions. METHODS: Fireground interventions included use of self-contained breathing apparatus by engineers, entry team wash down, contaminated equipment isolation, and personnel showering and washing of gear upon return to station. Urinary polycyclic aromatic hydrocarbon metabolites (PAH-OHs) were measured after structural fire responses before and after intervention implementation. Separately, infrared sauna use following live-fire training was compared to standard postfire care in a randomized trial. RESULTS: The fireground interventions significantly reduced mean total urinary postfire PAH-OHs in engineers (-40.4%, 95%CI -63.9%, -2.3%) and firefighters (-36.2%, 95%CI -56.7%, -6.0%) but not captains (-11.3% 95%CI -39.4%, 29.9%). Sauna treatment non-significantly reduced total mean PAH-OHs by -43.5% (95%CI -68.8%, 2.2%). CONCLUSIONS: The selected fireground interventions reduced urinary PAH-OHs in engineers and firefighters. Further evaluation of infrared sauna treatment is needed.
Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros , Exposição Ocupacional/prevenção & controle , Monitoramento Ambiental , Humanos , Exposição Ocupacional/estatística & dados numéricos , Equipamento de Proteção Individual , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/urina , PeleRESUMO
The effective removal of emerging contaminants of concern (ECCs) such as endocrine-disrupting chemicals, pharmaceutically active compounds, personal care products, and flame retardants is a desirable water treatment goal. In this study, one activated carbon, one carbonaceous resin, and two high-silica zeolites were studied to evaluate their effectiveness for the removal of an ECC mixture from lake water. Adsorption isotherm experiments were performed with a mixture of 28 ECCs at environmentally relevant concentrations ( approximately 200-900 ng/L). Among the tested adsorbents, activated carbon was the most effective, and activated carbon doses typically used for taste and odor control in drinking water (<10 mg/L) were sufficient to achieve a 2-log removal for most of the tested ECCs. The carbonaceous resin was less effective than the activated carbon because this adsorbent had a smaller volume of pores in the size range required for the adsorption of many ECCs ( approximately 6-9A). For the removal of ECC mixture constituents, zeolites were less effective than the carbonaceous adsorbents. Because zeolites contain pores of uniform size and shape, a few of the tested ECCs with matching pore size/shape requirements were well removed, but the adsorptive removal of others was negligible, even at zeolite doses of 100 mg/L. The results of this study demonstrate that effective adsorbents for the removal of a broad spectrum of ECCs from water should exhibit heterogeneity in pore size and shape and a large pore volume in the 6-9A size range.