Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38932214

RESUMO

Human adenovirus-36 (HAdV-36) infection has been linked to obesity, low lipid levels, and improvements in blood glucose levels and insulin sensitivity in animal models and humans, although epidemiological studies remain controversial. Therefore, this study investigated the relationship between HAdV-36 seropositivity and glycemic control in youths. This observational study examined 460 youths (246 with normal weight and 214 obese subjects). All participants underwent assessments for anthropometry, blood pressure, circulating fasting levels of glucose, lipids, insulin, and anti-HAdV-36 antibodies; additionally, the homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. In all, 57.17% of the subjects were HAdV-36 seropositive. Moreover, HAdV-36 seroprevalence was higher in obese subjects compared to their normal weight counterparts (59% vs. 55%). BMI (33.1 vs. 32.3 kg/m2, p = 0.03), and waist circumference (107 vs. 104 cm, p = 0.02), insulin levels (21 vs. 16.3 µU/mL, p = 0.003), and HOMA-IR (4.6 vs. 3.9, p = 0.02) were higher in HAdV-36-positive subjects with obesity compared to seronegative subjects. In the obese group, HAdV-36 seropositivity was associated with a reducing effect in blood glucose levels in a model adjusted for total cholesterol, triglyceride levels, age and sex (ß = -10.44, p = 0.014). Furthermore, a statistically significant positive relationship was observed between HAdV-36 seropositivity and insulin levels in the obesity group. These findings suggest that natural HAdV-36 infection improves glycemic control but does not ameliorate hyperinsulinemia in obese subjects.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Glicemia , Resistência à Insulina , Insulina , Obesidade , Humanos , Masculino , Feminino , Glicemia/análise , Insulina/sangue , Adolescente , Obesidade/sangue , Infecções por Adenovirus Humanos/sangue , Infecções por Adenovirus Humanos/epidemiologia , Infecções por Adenovirus Humanos/virologia , Criança , Estudos Soroepidemiológicos , Adulto Jovem , Índice de Massa Corporal , Anticorpos Antivirais/sangue
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791551

RESUMO

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Assuntos
Bifidobacterium longum , Chlorella , Interferon gama , Interleucina-10 , Probióticos , Infecções por Rotavirus , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Células HT29 , Interferon gama/metabolismo , Interleucina-10/metabolismo , Probióticos/farmacologia , Rotavirus/fisiologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
3.
Mol Cell Endocrinol ; 590: 112254, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677465

RESUMO

During insulin resistance, the heart undergoes a metabolic shift in which fatty acids (FA) account for roughly about 99% of the ATP production. This metabolic shift is indicative of impaired glucose metabolism. A shift in FA metabolism with impaired glucose tolerance can increase reactive oxygen species (ROS), lipotoxicity, and mitochondrial dysfunction, ultimately leading to cardiomyopathy. Thyroid hormones (TH) may improve the glucose intolerance by increasing glucose reabsorption and metabolism in peripheral tissues, but little is known on its effects on cardiac tissue during insulin resistance. In the present study, insulin resistant Otsuka Long Evans Tokushima Fatty (OLETF) rats were used to assess the effects of exogenous thyroxine (T4) on glucose metabolism in cardiac tissue. Rats were assigned to four groups: (1) lean, Long Evans Tokushima Otsuka (LETO; n=6), (2) LETO + T4 (8 µg/100 g BM/d × 5 wks; n = 7), (3) untreated OLETF (n = 6), and (4) OLETF + T4 (8 µg/100 g BM/d × 5 wks; n = 7). T4 increased GLUT4 gene expression by 85% in OLETF and increased GLUT4 protein translocation to the membrane by 294%. Additionally, T4 increased p-AS160 by 285%, phosphofructokinase-1 (PFK-1) mRNA, the rate limiting step in glycolysis, by 98% and hexokinase II by 64% in OLETF. T4 decreased both CPT2 mRNA and protein expression in OLETF. The results suggest that exogenous T4 has the potential to increase glucose uptake and metabolism while simultaneously reducing fatty acid transport in the heart of insulin resistant rats. Thus, L-thyroxine may have therapeutic value to help correct the impaired substrate metabolism associated with diabetic cardiomyopathy.


Assuntos
Transportador de Glucose Tipo 4 , Resistência à Insulina , Miocárdio , Ratos Endogâmicos OLETF , Tiroxina , Animais , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Tiroxina/farmacologia , Tiroxina/metabolismo , Miocárdio/metabolismo , Ratos , Masculino , Transporte Proteico/efeitos dos fármacos , Glucose/metabolismo , Ácidos Graxos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37355162

RESUMO

The shrimp Litopenaeus vannamei is the main farmed crustacean worldwide. This shrimp suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, that results in two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.


Assuntos
Penaeidae , Piruvato Quinase , Animais , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Glucose/metabolismo , Lactatos , Penaeidae/metabolismo , Mamíferos/metabolismo
5.
Medicina (Kaunas) ; 58(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295596

RESUMO

Background and Objectives: Perilipins 1-5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms' expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Fatores de Transcrição , Ratos , Feminino , Animais , Gravidez , Perilipina-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos , Colesterol
6.
Mol Cell Endocrinol ; 555: 111729, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921918

RESUMO

Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Síndrome Metabólica , Angiotensina I , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Expressão Gênica , Glucose , Insulina , Lipogênese , Fígado , Obesidade , Fragmentos de Peptídeos , Ratos , Ratos Endogâmicos OLETF , Receptor Tipo 1 de Angiotensina
7.
Genes (Basel) ; 13(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627302

RESUMO

The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann's Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann's Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann's Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann's Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.


Assuntos
Charadriiformes , Animais , Aves/genética , Charadriiformes/genética , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Filogenia , Seleção Genética
8.
Endocrine ; 75(1): 92-107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34327606

RESUMO

PURPOSE: Angiotensin receptor blockers (ARBs) can ameliorate metabolic syndrome (MetS)-associated dyslipidemia, hepatic steatosis, and glucose intolerance, suggesting that angiotensin receptor (AT1) over-activation contributes to impaired lipid and glucose metabolism, which is characteristic of MetS. The aim of this study was to evaluate changes in the lipid profile and proteins of fatty acid uptake, triacylglycerol (TAG) synthesis, and ß-oxidation to better understand the links between AT1 overactivation and non-alcoholic fatty liver disease (NAFLD) during MetS. METHODS: Four groups of 25-week-old-rats were used: (1) untreated LETO, (2) untreated OLETF, (3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 weeks) and (4) OLETF ± ARB (MINUS; 10 mg olmesartan/kg/d × 4 weeks, then removed until dissection). To investigate the dynamic shifts in metabolism, animals were dissected after an oral glucose challenge (fasting, 3 and 6 h post-glucose). RESULTS: Compared to OLETF, plasma total cholesterol and TAG remained unchanged in ARB. However, liver TAG was 55% lesser in ARB than OLETF, and remained lower throughout the challenge. Basal CD36 and ApoB were 28% and 29% lesser, respectively, in ARB than OLETF. PRDX6 abundance in ARB was 45% lesser than OLETF, and it negatively correlated with liver TAG in ARB. CONCLUSIONS: Chronic blockade of AT1 protects the liver from TAG accumulation during glucose overload. This may be achieved by modulating NEFA uptake and increasing TAG export via ApoB. Our study highlights the contributions of AT1 signaling to impaired hepatic substrate metabolism and the detriments of a high-glucose load and its potential contribution to steatosis during MetS.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Resistência à Insulina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Glicemia/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ratos , Ratos Endogâmicos OLETF , Ratos Long-Evans , Receptor Tipo 1 de Angiotensina/metabolismo , Triglicerídeos/metabolismo
9.
J Mol Recognit ; 33(10): e2869, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32881113

RESUMO

Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Porcine kidney BADH (pkBADH) follows a bi-bi ordered mechanism in which NAD+ binds to the enzyme before the aldehyde. Previous studies showed that NAD+ induces complex and unusual conformational changes on pkBADH and that potassium is required to maintain its quaternary structure. The aim of this work was to analyze the structural changes in pkBADH caused by NAD+ binding and the role played by potassium in those changes. The pkBADH cDNA was cloned and overexpressed in Escherichia coli, and the protein was purified by affinity chromatography using a chitin matrix. The pkBADH/NAD+ interaction was analyzed by circular dichroism (CD) and by isothermal titration calorimetry (ITC) by titrating the enzyme with NAD+ . The cDNA has an open reading frame of 1485 bp and encodes a protein of 494 amino acids, with a predicted molecular mass of 53.9 kDa. CD data showed that the binding of NAD+ to the enzyme caused changes in its secondary structure, whereas the presence of K+ helps maintain its α-helix content. K+ increased the thermal stability of the pkBADH-NAD+ complex by 5.3°C. ITC data showed that NAD+ binding occurs with different association constants for each active site between 37.5 and 8.6 µM. All the results support previous data in which the enzyme incubation with NAD+ provoked changes in reactivity, which is an indication of slow conformational rearrangements of the active site.


Assuntos
Betaína-Aldeído Desidrogenase/metabolismo , Domínio Catalítico , Rim/enzimologia , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Betaína-Aldeído Desidrogenase/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Alinhamento de Sequência , Sus scrofa/metabolismo , Temperatura
10.
Acta Med Acad ; 49(1): 67-70, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32738119

RESUMO

OBJECTIVE: To describe a severe case of infection by Leptospira in a woman in the northwest of Mexico. CASE REPORT: A 55-yearold woman from Sonora, México arrived at the Intensive Care Unit due to severe multiple organ failure primarily affecting the respiratory, renal and hepatic systems. Diagnostic tests were performed, and they were positive for anti-Leptospira antibodies, IgM and IgG; and spirochetes were observed on dark field microscopy and confirmed by Polymerase Chain Reaction (PCR). Doxycycline and platelet apheresis transfusion were used as treatment, which led to a very slow recovery. CONCLUSION: The information presented in this study may help in the identification of pathology caused by spirochetes. This case report is the first to present a case of severe leptospirosis in Sonora, México.


Assuntos
Leptospira , Leptospirose , Insuficiência de Múltiplos Órgãos/microbiologia , Antibacterianos/uso terapêutico , Anticorpos Antibacterianos/sangue , Doxiciclina/uso terapêutico , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Unidades de Terapia Intensiva , Leptospira/genética , Leptospira/crescimento & desenvolvimento , Leptospirose/complicações , Leptospirose/diagnóstico , Leptospirose/microbiologia , Leptospirose/terapia , México , Microscopia/métodos , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/terapia , Transfusão de Plaquetas , Reação em Cadeia da Polimerase , Índice de Gravidade de Doença
11.
Infect Genet Evol ; 73: 190-196, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31063865

RESUMO

BACKGROUND AND OBJECTIVES: Enteric viral infections are among the leading causes of gastroenteritis in children up to five years of age worldwide. This study was aimed to determine the disease severity, incidence, and molecular genotyping of rotaviruses, noroviruses, astroviruses, and enteric adenoviruses as gastroenteritis agents among children up to five years old. MATERIALS AND METHODS: Gastroenteritis severity was determined by using the Ruuska and Vesikari score, whereas the incidence of enteric infections and their genotyping were determined by reverse transcription-polymerase chain reaction (RT-PCR) and sequence analysis. RESULTS: Rotaviruses were observed to possess the highest incidence with 10% (18/179) of the cases positives; nevertheless, noroviruses had the highest severe gastroenteritis score (13 ±â€¯3 points). Results indicated that 56% (10/18) of the detected rotavirus strains were genotype G12P[8], 50% (4/8) of noroviruses were GII.4 and 25% (2/8) were genotype GI.8. Out of the sapovirus positive samples, 30% (2/6) were genotyped as GI·I and GII·I. Sixty percent of the astrovirus strains (3/5) were genotype HAstV-2, and 20% (1/5) were genotype HAstV-6. Additionally, one of the adenovirus strains was identified as human mastadenovirus C type 6 specie. CONCLUSIONS: The diarrhea severity reduction in children provides evidence that the rotavirus vaccination program in the northwest of Mexico has been successful, even among children infected by the rotavirus emergent strain G12, however, norovirus resulted as the leading severe gastroenteritis-causing agent in children with rotavirus vaccine.


Assuntos
Gastroenterite/prevenção & controle , Gastroenterite/virologia , Vacinas contra Rotavirus/imunologia , Viroses/prevenção & controle , Vírus/isolamento & purificação , Criança , Fezes/virologia , Gastroenterite/epidemiologia , Genótipo , Humanos , Filogenia , Viroses/virologia , Vírus/classificação , Vírus/genética
12.
Fish Shellfish Immunol ; 92: 165-171, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31146006

RESUMO

Hypoxia-inducible factor -1 (HIF-1) is a transcriptional factor that regulates the expression of several glycolytic genes. The white spot syndrome virus (WSSV) induces a shift in glycolysis that favors viral replication in white shrimp Litopenaeus vannamei. HIF-1 is related to the pathogenesis of the WSSV infection through the induction of metabolic changes in infected white shrimp. Although the WSSV infection is associated with metabolic changes, the role of HIF-1 on key glycolytic genes during the WSSV infection has not been examined. In this work, we evaluated the effect of HIF-1α silencing on expression and activity of glycolytic enzymes (Hexokinase-HK, phosphofructokinase-PFK and pyruvate kinase-PK) along with the glucose transporter 1 (Glut1), regulatory enzymes (glucose-6-phosphate dehydrogenase-G6PDH and pyruvate dehydrogenase-PDH), and metabolic intermediates of glycolysis (glucose-6-phosphate-G6P and pyruvate). The expression of Glut1 increased in each tissue evaluated after WSSV infection, while HK, PFK and PK gene expression and enzyme activities increased in a tissue-specific manner. G6PDH activity increased during WSSV infection, and its substrate G6P decreased, while PDH activity decreased and its substrate pyruvate increased. Silencing of HIF-1α blocked the WSSV-induced Glut1 and glycolytic genes upregulation and enzyme activity in a tissue-specific manner. We conclude that HIF-1 regulates the WSSV-induced glycolysis through induction of glycolytic genes contributing to glucose metabolism in tissues of infected shrimp. Also, the inhibition, and activation of regulatory genes are likely to decrease the availability of the raw materials essential for WSSV replication and increase oxidative metabolism.


Assuntos
Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Penaeidae/genética , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Regulação da Expressão Gênica/imunologia , Inativação Gênica
13.
Artigo em Inglês | MEDLINE | ID: mdl-30041062

RESUMO

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that induces genes involved in glucose metabolism. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces a shift in glucose metabolism and oxidative stress. HIF-1α is associated with the induction of metabolic changes in tissues of WSSV-infected shrimp. However, the contributions of HIF-1 to viral load and antioxidant responses in WSSV-infected shrimp have been not examined. In this study, the effect of HIF-1 silencing on viral load and the expression and activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione S-transferase-GST, and catalase) along with oxidative damage (lipid peroxidation and protein carbonyl) in tissues of white shrimp infected with the WSSV were studied. The viral load increased in hepatopancreas and muscle after WSSV infection, and the accumulative mortality was of 100% at 72 h post-infection. The expression and activity of SOD, catalase, and GST decreased in each tissue evaluated after WSSV infection. Protein carbonyl concentrations increased in each tissue after WSSV infection, while lipid peroxidation increased in hepatopancreas, but not in muscle. Silencing of HIF-1α decreased the WSSV viral load in hepatopancreas and muscle of infected shrimp along with shrimp mortality. Silencing of HIF-1α ameliorated the antioxidant response in a tissue-specific manner, which translated to a decrease in oxidative damage. These results suggest that HIF-1 is essential for restoring the antioxidant response, which counters the oxidative injury associated with WSSV infection.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Aquicultura , DNA Viral/isolamento & purificação , Inativação Gênica , Hepatopâncreas/crescimento & desenvolvimento , Hepatopâncreas/metabolismo , Hepatopâncreas/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intramusculares , Peroxidação de Lipídeos , México , Músculos/metabolismo , Músculos/virologia , Especificidade de Órgãos , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Carbonilação Proteica , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/metabolismo , Carga Viral , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/fisiologia
14.
Curr Mol Med ; 18(10): 679-688, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30698113

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine that plays a crucial role as a regulator of the innate and adaptive immune responses and takes part in the destructive process of the joint in rheumatoid arthritis (RA) by promoting angiogenesis and inducing proinflammatory cytokines and matrix metalloproteinases (MMP). We evaluated if recombinant human MIF (rhMIF) induces the production of TNF-α, IFN-γ, IL-1ß, IL-6, IL-10, IL-17A, and IL- 17F in peripheral blood mononuclear cells (PBMC) from RA patients and control subjects (CS). METHODS: The PBMC from RA patients and CS were stimulated for 24 hours with combinations of LPS, rhMIF or the MIF antagonist ISO-1. Cytokine profiles were measured using a multiplex immunoassay and, macrophage migration inhibitory factor (MIF) was determined by ELISA kit. RESULTS: The PBMC of CS and RA produced Th1 and Th17 cytokines under stimulation with rhMIF, however, this effect was higher in the cells of RA patients. The rhMIFstimulated PBMC from RA patients produced higher levels of Th1 and Th17 cytokines in comparison with unstimulated cells: TNF-α (538.81 vs. 5.02 pg/mL, p<0.001), IFN-γ (721.90 vs. 8.40 pg/mL, p<0.001), IL-1ß (150.14 vs. 5.17 pg/mL, p<0.05), IL-6 (19769.70 vs. 119.85 pg/mL, p<0.001), IL-17A (34.97 vs. 0.90 pg/mL, p<0.01) and IL-17F (158.43 vs. 0.92 pg/mL, p<0.001). CONCLUSION: These results highlight the potential role of MIF in the establishment of the chronic inflammatory process in RA via Th1 and Th17 cytokine profile induction and provide new evidence of the role of MIF to stimulate the IL-17A and IL-17F expression in PBMC from RA and CS.


Assuntos
Artrite Reumatoide/imunologia , Citocinas/imunologia , Oxirredutases Intramoleculares/farmacologia , Fatores Inibidores da Migração de Macrófagos/farmacologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Artrite Reumatoide/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Células Th1/patologia , Células Th17/patologia
15.
Gen Comp Endocrinol ; 252: 36-47, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28743556

RESUMO

Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals.


Assuntos
Jejum/metabolismo , Focas Verdadeiras/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Animais , Jejum/sangue , Iodeto Peroxidase/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Focas Verdadeiras/sangue , Hormônios Tireóideos/sangue , Hormônios Tireóideos/genética
16.
Biochem Biophys Res Commun ; 490(3): 623-628, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28630000

RESUMO

Betaine Aldehyde Dehydrogenase (betaine aldehyde: NAD(P)+ oxidoreductase, (E.C. 1.2.1.8; BADH) catalyze the irreversible oxidation of betaine aldehyde (BA) to glycine betaine (GB) and is essential for polyamine catabolism, γ-aminobutyric acid synthesis, and carnitine biosynthesis. GB is an important osmolyte that regulates the homocysteine levels, contributing to a vascular risk factor reduction. In this sense, distinct investigations describe the physiological roles of GB, but there is a lack of information about the GB novo synthesis process and regulation during cardiac hypertrophy induced by pregnancy. In this work, the BADH mRNA expression, protein level, and activity were quantified in the left ventricle before, during, and after pregnancy. The mRNA expression, protein content and enzyme activity along with GB content of BADH increased 2.41, 1.95 and 1.65-fold respectively during late pregnancy compared to not pregnancy, and returned to basal levels at postpartum. Besides, the GB levels increased 1.53-fold during pregnancy and remain at postpartum. Our results demonstrate that physiological cardiac hypertrophy induced BADH mRNA expression and activity along with GB production, suggesting that BADH participates in the adaptation process of physiological cardiac hypertrophy during pregnancy, according to the described GB role in cellular osmoregulation, osmoprotection and reduction of vascular risk.


Assuntos
Betaína-Aldeído Desidrogenase/genética , Cardiomegalia/genética , Complicações Cardiovasculares na Gravidez/genética , Animais , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/análise , Betaína-Aldeído Desidrogenase/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Feminino , Expressão Gênica , Oxirredução , Gravidez , Complicações Cardiovasculares na Gravidez/etiologia , Complicações Cardiovasculares na Gravidez/metabolismo , RNA Mensageiro/genética , Ratos Sprague-Dawley
17.
J Endocrinol ; 232(3): 501-511, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27980001

RESUMO

Both hypothyroidism and hyperthyroidism are associated with glucose intolerance, calling into question the contribution of thyroid hormones (TH) on glucose regulation. TH analogues and derivatives may be effective treatment options for glucose intolerance and insulin resistance (IR), but their potential glucoregulatory effects during conditions of impaired metabolism are not well described. To assess the effects of thyroxine (T4) on glucose intolerance in a model of insulin resistance, an oral glucose tolerance test (oGTT) was performed on three groups of rats (n = 8): (1) lean, Long Evans Tokushima Otsuka (LETO), (2) obese, Otsuka Long Evans Tokushima Fatty (OLETF) and (3) OLETF + T4 (8.0 µg/100 g BM/day × 5 weeks). T4 attenuated glucose intolerance by 15% and decreased IR index (IRI) by 34% in T4-treated OLETF compared to untreated OLETF despite a 31% decrease in muscle Glut4 mRNA expression. T4 increased the mRNA expressions of muscle monocarboxylate transporter 10 (Mct10), deiodinase type 2 (Di2), sirtuin 1 (Sirt1) and uncoupling protein 2 (Ucp2) by 1.8-, 2.2-, 2.7- and 1.4-fold, respectively, compared to OLETF. Activation of AMP-activated protein kinase (AMPK) and insulin receptor were not significantly altered suggesting that the improvements in glucose intolerance and IR were independent of enhanced insulin-mediated signaling. The results suggest that T4 treatment increased the influx of T4 in skeletal muscle and, with an increase of DI2, increased the availability of the biologically active T3 to upregulate key factors such SIRT1 and UCP2 involved in cellular metabolism and glucose homeostasis.


Assuntos
Intolerância à Glucose/tratamento farmacológico , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Tiroxina/uso terapêutico , Animais , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Long-Evans , Sirtuína 1/genética , Sirtuína 1/metabolismo , Tiroxina/farmacologia , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R189-R196, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903512

RESUMO

Thyroid hormones (THs) regulate metabolism, but are typically suppressed during times of stressful physiological conditions, including fasting. Interestingly, prolonged fasting in northern elephant seal pups is associated with reliance on a lipid-based metabolism and increased levels of circulating THs that are partially attributed to active secretion as opposed to reduced clearance. This apparent paradox is coupled with complementary increases in cellular TH-mediated activity, suggesting that in mammals naturally adapted to prolonged fasting, THs are necessary to support metabolism. However, the functional relevance of this physiological paradox has remained largely unexplored, especially as it relates to the regulation of lipids. To address the hypothesis that TSH-mediated increase in THs contributes to lipid metabolism, we infused early and late-fasted pups with TSH and measured several key genes in adipose and muscle, and plasma hormones associated with regulation of lipid metabolism. TSH infusion increased the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) more than 6.5-fold at 60 min in muscle, and expression of uncoupling protein 2 (UCP2) more than 27-fold during the early fast at 60 min, in adipose. Additionally, during the late fast period, the protein content of adipose CD36 increased 1.1-fold, and plasma nonesterified fatty acid (NEFA) concentrations increased 25% at 120 min, with NEFA levels returning to baseline after 24 h. We show that the TSH-induced increases in THs in fasting pups are functional and likely contribute to the maintenance of a lipid-based metabolism.


Assuntos
Jejum/fisiologia , Metabolismo dos Lipídeos/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Focas Verdadeiras/metabolismo , Hormônios Tireóideos/metabolismo , Proteína Desacopladora 2/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Glândulas Endócrinas/fisiologia
19.
Gene ; 591(2): 376-81, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27312951

RESUMO

Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , PPAR gama/genética , Prenhez/fisiologia , Animais , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tamanho do Órgão , PPAR gama/metabolismo , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Transcrição Gênica
20.
Am J Physiol Regul Integr Comp Physiol ; 310(6): R502-12, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26739649

RESUMO

Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrß-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrß-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Jejum/metabolismo , Glucose/farmacologia , Insulina/farmacologia , Focas Verdadeiras , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/biossíntese , Animais , Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Infusões Intravenosas , Iodeto Peroxidase/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Glândula Tireoide/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/biossíntese , Hormônios Tireóideos/sangue , Hormônios Tireóideos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...