Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(47): 67711-67723, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34263402

RESUMO

Cadmium (Cd) inhibits soybean root growth, but its exact mode of action is still not completely understood. We evaluated the effects of Cd on growth, mitochondrial respiration, lipid peroxidation, total phenols, glutathione, and activities of lipoxygenase (LOX), superoxide dismutase (SOD), and catalase (CAT) in soybean roots. In primary roots, Cd stimulated KCN-insensitive respiration and KCN-SHAM-insensitive respiration, indicating the involvement of the alternative oxidase (AOX) pathway, while it decreased KCN-sensitive respiration, suggesting an inhibition of the cytochrome oxidase pathway (COX). In isolated mitochondria, Cd uncoupled the oxidative phosphorylation since it decreased state III respiration (coupled respiration) and ADP/O and respiratory control ratios, while it increased state IV respiration (depletion of exogenously added ADP). The uncoupling effect increased extramitochondrial LOX activity, lipid peroxidation, and oxidized and reduced glutathione, which induced an antioxidant response with enhanced SOD and CAT activities. In brief, our findings reveal that Cd acts as an uncoupler of the mitochondrial oxidative phosphorylation in soybean roots, disturbing cellular respiration and inducing oxidative cellular stress.


Assuntos
Cádmio , Fosforilação Oxidativa , Antioxidantes/metabolismo , Cádmio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Glycine max/metabolismo , Superóxido Dismutase/metabolismo
2.
Plant Signal Behav ; 10(2): e989059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826260

RESUMO

The effects of the allelochemical benzoxazolin-2-(3H)-one (BOA) were evaluated on growth, lignin content and its monomers p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) in roots, stems and leaves of soybean. BOA decreased the lengths and fresh weights of roots and stems, and the fresh weights and areas of leaves. Reductions in the growth were accompanied by enhanced lignin content in all tissues. In roots, the allelochemical increased the content of H, G and S monomers as well as the overall amount of lignin (referred to as the sum of H+G+S), but did not alter the S/G ratio. In stems and leaves, BOA increased the H, G, S and H+G+S contents while decreasing the S/G ratio. In brief, BOA-induced inhibition of soybean may be due to excessive production of monomers that increase the degree of polymerization of lignin, limit cell expansion, solidify the cell wall and restrict plant growth.


Assuntos
Benzoxazóis/farmacologia , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Lignina/metabolismo , Biomassa , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Glycine max/efeitos dos fármacos
3.
Plant Signal Behav ; 9(12): e977704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482756

RESUMO

In the current work, we investigated the effects of dopamine, an neurotransmitter found in several plant species on antioxidant enzyme activities and ROS in soybean (Glycine max L. Merrill) roots. The effects of dopamine on SOD, CAT and POD activities, as well as H2O2, O2(•-), melanin contents and lipid peroxidation were evaluated. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM dopamine, in a growth chamber (25°C, 12 h photoperiod, irradiance of 280 µmol m(-2) s(-1)) for 24 h. Significant increases in melanin content were observed. The levels of ROS and lipid peroxidation decreased at all concentrations of dopamine tested. The SOD activity increased significantly under the action of dopamine, while CT activity was inhibited and POD activity was unaffected. The results suggest a close relationship between a possible antioxidant activity of dopamine and melanin and activation of SOD, reducing the levels of ROS and damage on membranes of soybean roots.


Assuntos
Antioxidantes/metabolismo , Dopamina/farmacologia , Glycine max/enzimologia , Raízes de Plantas/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Melaninas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Superóxidos/metabolismo
4.
Plant Signal Behav ; 9(4): e28275, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598311

RESUMO

Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-DOPA, which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This mini-review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions.


Assuntos
Levodopa/metabolismo , Mucuna/metabolismo , Oxirredução , Feromônios
5.
PLoS One ; 8(12): e80542, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312480

RESUMO

Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.


Assuntos
Parede Celular/metabolismo , Cinamatos , Glycine max/crescimento & desenvolvimento , Lignina/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Cinamatos/metabolismo , Cinamatos/farmacologia , Raízes de Plantas/citologia , Glycine max/citologia
6.
ScientificWorldJournal ; 2013: 134237, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348138

RESUMO

L-3,4-Dihydroxyphenylalanine (L-DOPA) is a known allelochemical exuded from the roots of velvet bean (Mucuna pruriens L. Fabaceae). In the current work, we analyzed the effects of L-DOPA on the growth, the activities of phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), and peroxidase (POD), and the contents of phenylalanine, tyrosine, and lignin in maize (Zea mays) roots. Three-day-old seedlings were cultivated in nutrient solution with or without 0.1 to 2.0 mM L-DOPA in a growth chamber (25°C, light/dark photoperiod of 12/12, and photon flux density of 280 µ mol m(-2) s(-1)) for 24 h. The results revealed that the growth (length and weight) of the roots, the PAL, TAL, and soluble and cell wall-bound POD activities decreased, while phenylalanine, tyrosine, and lignin contents increased after L-DOPA exposure. Together, these findings showed the susceptibility of maize to L-DOPA. In brief, these results suggest that the inhibition of PAL and TAL can accumulate phenylalanine and tyrosine, which contribute to enhanced lignin deposition in the cell wall followed by a reduction of maize root growth.


Assuntos
Levodopa/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Plântula/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Levodopa/química , Lignina/metabolismo
7.
PLoS One ; 8(7): e69105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922685

RESUMO

Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.


Assuntos
Cinamatos/farmacologia , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Lignina/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Benzoatos/farmacologia , Biomassa , Lignina/química , Peroxidases/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/enzimologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Glycine max/efeitos dos fármacos , Transcinamato 4-Mono-Oxigenase/metabolismo
8.
Plant Signal Behav ; 8(9)2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838960

RESUMO

In the present study, we investigated the effects of dopamine, an allelochemical exuded from the velvetbean (Mucuna pruriens L DC. var utilis), on the growth and cell viability of soybean (Glycine max L. Merrill) roots. We analyzed the effects of dopamine on superoxide dismutase, phenylalanine ammonia-lyase and cell wall-bound peroxidase activities as well as its effects on lignin contents in the roots. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.25 to 1.0 mM dopamine, in a growth chamber (25°C, 12L:12D photoperiod, irradiance of 280 µmol m(-2) s(-1)) for 24 h. In general, the length, fresh weight and dry weight of roots, cell viability, PAL and POD activities decreased, while SOD activities increased after dopamine treatment. The content of lignin was not altered. The data demonstrate the susceptibility of soybean to dopamine and reinforce the role of this catecholamine as a strong allelochemical. The results also suggest that dopamine-induced inhibition in soybean roots is not related to the production of lignin, but may be related to damage caused by reactive oxygen species.


Assuntos
Dopamina/farmacologia , Glycine max/enzimologia , Glycine max/crescimento & desenvolvimento , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/enzimologia , Biomassa , Sobrevivência Celular/efeitos dos fármacos , Lignina/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos
9.
J Chem Ecol ; 37(8): 891-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21710366

RESUMO

The non-protein amino acid, L-3,4-dihydroxyphenylalanine (L-DOPA), is the main allelochemical released from the roots of velvetbean and affects seed germination and root growth of several plant species. In the work presented here, we evaluated, in soybean roots, the effects of L-DOPA on the following: polyphenol oxidase (PPO), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities; superoxide anion (O·-2), hydrogen peroxide (H(2)O(2)), and melanin contents; and lipid peroxidation. To this end, 3-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 0.1 to 1.0 mM L-DOPA in a growth chamber (at 25°C, with a light/dark photoperiod of 12/12 hr and a photon flux density of 280 µmol m(-2) s(-1)) for 24 hr. The results showed that L-DOPA increased the PPO activity and, further, the melanin content. The activities of SOD and POD increased, but CAT activity decreased after the chemical exposure. The contents of reactive oxygen species (ROS), such as O·-2 and H(2)O(2), and the levels of lipid peroxidation significantly decreased under all concentrations of L-DOPA tested. These results suggest that L-DOPA was absorbed by the soybean roots and metabolized to melanin. It was concluded that the reduction in the O·-2 and H(2)O(2) contents and lipid peroxidation in soybean roots was due to the enhanced SOD and POD activities and thus a possible antioxidant role of L-DOPA.


Assuntos
Glycine max/enzimologia , Glycine max/metabolismo , Levodopa/metabolismo , Melaninas/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Catalase/metabolismo , Catecol Oxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo
10.
Ecotoxicol Environ Saf ; 73(8): 1959-64, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817298

RESUMO

The effects of cadmium (Cd), a well-known environmental pollutant with high toxicity to plants, were tested on root growth, cell viability, phenylalanine ammonia-lyase (PAL) soluble plus cell wall-bound peroxidase (POD) activities, hydrogen peroxide (H(2)O(2)) levels, and the content and monomeric composition of lignin in soybean (Glycine max) roots. Three-day-old seedlings were cultivated in half-strength Hoagland's solution (pH 6.0), with or without 25-100 µM CdCl(2) in a growth chamber (25°C, 12/12-h light/dark photoperiod, irradiance of 280 µmolm(-2)s(-1)) for 24h. In general, root length and the fresh and dry weights decreased followed by loss of cell viability after Cd treatment. PAL activity, soluble and cell wall-bound POD activities, and H(2)O(2) and lignin contents increased significantly after Cd exposure. The lignin monomeric composition of Cd-exposed roots revealed a significant increase of p-hydroxyphenyl (H) and syringyl (S) units. These results suggest that the effects caused by Cd may be due to excessive production of monolignols forming lignin, which solidifies the cell wall and restricts root growth.


Assuntos
Cloreto de Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Glycine max/efeitos dos fármacos , Lignina/metabolismo , Fotoperíodo , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Poluentes Ambientais/química , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Fatores de Tempo
11.
J Chem Ecol ; 33(2): 265-75, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17195115

RESUMO

L-3,4-dihydroxyphenylalanine (L: -DOPA), an allelochemical exuded from the roots of velvet bean [Mucuna pruriens (L.) DC. var. utilis], presents a highly inhibitory action to plant growth. The effects of L-DOPA on phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) and peroxidase (POD, EC 1.11.1.7) activities, and phenolic compound and lignin content in soybean [Glycine max (L.) Merr.] roots were investigated to determine the possible phytotoxic mechanism. Three-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), without or with 0.1 to 1.0 mM L-DOPA in a growth chamber (25 degrees C, 12-hr light to 12-hr darkness photoperiod, irradiance of 280 micromol m-2 s-1) for 24 hr. In general, the length, fresh weight, and dry weight of the roots decreased, whereas PAL and POD activities and phenolic compound and lignin content increased after L-DOPA treatments. Results showed the susceptibility of soybean to L-DOPA and reinforce the role of this nonprotein amino acid as a strong allelochemical. The present findings also suggest that L-DOPA-induced inhibition in soybean roots may be because of a cell wall stiffening process related to the formation of cross-linking between cell wall polymers linked to lignin production.


Assuntos
Glycine max/efeitos dos fármacos , Levodopa/farmacologia , Lignina/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Mucuna/química , Peroxidase/efeitos dos fármacos , Peroxidase/metabolismo , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...