RESUMO
In the present study we evaluated the cardiovascular effects produced by microinjection of the new component of the renin-angiotensin system, alamandine, into caudal ventrolateral medulla of urethane-anesthetized normotensive and hypertensive 2K1C rats. The participation of different angiotensin receptors in the effects of alamandine was also evaluated. Microinjection of angiotensin-(1-7) was used for comparison. The microinjection of 4, 40 and 140pmol of alamandine or angiotensin-(1-7) into caudal ventrolateral medulla induced similar hypotensive effects in Sham-operated rats. However, contrasting with angiotensin-(1-7), in 2K1C rats the MAP response to the highest dose of alamandine was similar to that observed with saline. The microinjection of A-779, a selective Mas receptor antagonist, blunted the angiotensin-(1-7) effects but did not block the hypotensive effect of alamandine in Sham or in 2K1C rats. However, microinjection of D-Pro7-angiotensin-(1-7), a Mas/MrgD receptor antagonist, blocked the hypotensive effect induced by both peptides. Furthermore, microinjection of PD123319, a putative AT2 receptor antagonist blocked the hypotensive effect of alamandine, but not of angiotensin-(1-7), in Sham and 2K1C rats. Microinjection of the AT1 receptor antagonist, losartan, did not alter the hypotensive effect of angiotensin-(1-7) or alamandine in both groups. These results provide new insights about the differential mechanisms participating in the central cardiovascular effects of alamandine and angiotensin-(1-7) in normotensive and 2K1C hypertensive rats.
Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Angiotensina I/toxicidade , Hipertensão/induzido quimicamente , Oligopeptídeos/toxicidade , Fragmentos de Peptídeos/toxicidade , Animais , Imidazóis/farmacologia , Masculino , Piridinas/farmacologia , Ratos , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacosRESUMO
In the subfamily Polistinae, caste dimorphism is not pronounced and differences among females are primarily physiological and behavioral. We investigated factors that indicate the reproductive status in females of Polistes ferreri Saussure. We analyzed females from nine colonies and evaluated morphometric parameters, ovarian development, occurrence of insemination, relative age, and cuticular chemical profile. The colony females showed three kinds of ovarian development: type A, filamentous ovarioles; type B, ovarioles containing partially developed oocytes; and type C, long and well-developed ovarioles containing two or more mature oocytes. The stepwise discriminant analysis of the cuticular chemical profile showed that it was possible to distinguish the three groups of females: workers 1, workers 2, and queens. However, the stepwise discriminant analysis of the morphological differences did not show significant differences among these groups. The queens were among the older females in the colony and were always inseminated, while the age of the workers varied according to the stage of colony development.
Assuntos
Reprodução , Vespas , Animais , FemininoRESUMO
We examined the effect of exercise training (Ex) without (Ex 0 percent) or with a 3 percent workload (Ex 3 percent) on different cardiac and renal parameters in renovascular hypertensive (2K1C) male Fisher rats weighing 150-200 g. Ex was performed for 5 weeks, 1 h/day, 5 days/week. Ex 0 percent or Ex 3 percent induced similar attenuation of baseline mean arterial pressure (MAP, 119 ± 5 mmHg in 2K1C Ex 0 percent, N = 6, and 118 ± 5 mmHg in 2K1C Ex 3 percent, N = 11, vs 99 ± 4 mmHg in sham sedentary (Sham Sed) controls, N = 10) and heart rate (HR, bpm) (383 ± 13 in 2K1C Ex 0 percent, N = 6, and 390 ± 14 in 2K1C Ex 3 percent, N = 11 vs 371 ± 11 in Sham Sed, N = 10,). Ex 0 percent, but not Ex 3 percent, improved baroreflex bradycardia (0.26 ± 0.06 ms/mmHg, N = 6, vs 0.09 ± 0.03 ms/mmHg in 2K1C Sed, N = 11). Morphometric evaluation suggested concentric left ventricle hypertrophy in sedentary 2K1C rats. Ex 0 percent prevented concentric cardiac hypertrophy, increased cardiomyocyte diameter and decreased cardiac vasculature thickness in 2K1C rats. In contrast, in 2K1C, Ex 3 percent reduced the concentric remodeling and prevented the increase in cardiac vasculature wall thickness, decreased the cardiomyocyte diameter and increased collagen deposition. Renal morphometric analysis showed that Ex 3 percent induced an increase in vasculature wall thickness and collagen deposition in the left kidney of 2K1C rats. These data suggest that Ex 0 percent has more beneficial effects than Ex 3 percent in renovascular hypertensive rats.
Assuntos
Animais , Masculino , Ratos , Coração/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Rim/fisiopatologia , Condicionamento Físico Animal/fisiologia , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Bradicardia/fisiopatologia , Tamanho Celular , Frequência Cardíaca/fisiologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Rim/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologiaRESUMO
We examined the effect of exercise training (Ex) without (Ex 0%) or with a 3% workload (Ex 3%) on different cardiac and renal parameters in renovascular hypertensive (2K1C) male Fisher rats weighing 150-200 g. Ex was performed for 5 weeks, 1 h/day, 5 days/week. Ex 0% or Ex 3% induced similar attenuation of baseline mean arterial pressure (MAP, 119 ± 5 mmHg in 2K1C Ex 0%, N = 6, and 118 ± 5 mmHg in 2K1C Ex 3%, N = 11, vs 99 ± 4 mmHg in sham sedentary (Sham Sed) controls, N = 10) and heart rate (HR, bpm) (383 ± 13 in 2K1C Ex 0%, N = 6, and 390 ± 14 in 2K1C Ex 3%, N = 11 vs 371 ± 11 in Sham Sed, N = 10,). Ex 0%, but not Ex 3%, improved baroreflex bradycardia (0.26 ± 0.06 ms/mmHg, N = 6, vs 0.09 ± 0.03 ms/mmHg in 2K1C Sed, N = 11). Morphometric evaluation suggested concentric left ventricle hypertrophy in sedentary 2K1C rats. Ex 0% prevented concentric cardiac hypertrophy, increased cardiomyocyte diameter and decreased cardiac vasculature thickness in 2K1C rats. In contrast, in 2K1C, Ex 3% reduced the concentric remodeling and prevented the increase in cardiac vasculature wall thickness, decreased the cardiomyocyte diameter and increased collagen deposition. Renal morphometric analysis showed that Ex 3% induced an increase in vasculature wall thickness and collagen deposition in the left kidney of 2K1C rats. These data suggest that Ex 0% has more beneficial effects than Ex 3% in renovascular hypertensive rats.