Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 219, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372796

RESUMO

The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.


Assuntos
Clorofíceas , Microalgas , Academias e Institutos , Biocombustíveis , Biotecnologia
2.
Aquat Toxicol ; 264: 106732, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879199

RESUMO

This work focuses on the formation of palmelloid-like phenotype in the freshwater alga Raphidocelis subcapitata (formerly known as Pseudokirchneriella subcapitata and Selenastrum capricornutum), when exposed to adverse conditions generated by the presence of organic [the antibiotic erythromycin (ERY) and the herbicide metolachlor (MET)] or inorganic [the heavy metals, cadmium (Cd) and zinc (Zn)] pollutants, at environmentally relevant concentrations. This alga in absence of stress or when exposed to ERY or Zn, up to 200 µg/L, essentially showed a single-nucleus state, although algal growth was reduced or stopped. R. subcapitata "switched" to a multinucleated state (palmelloid-like morphology) and accumulated energy-reserve compounds (neutral lipids) when stressed by 100-200 µg/L MET or 200 µg/L Cd; at these concentrations of pollutants, growth was arrested, however, the majority of the algal population (≥83 %) was alive. The formation of palmelloid-like phenotype, at sub-lethal concentrations of pollutants, was dependent on the pollutant, its concentration and exposure time. The multinucleated structure is a transitory phenotype since R. subcapitata population was able to revert to a single-nucleus state, with normal cell size, within 24-96 h (depending on the impact of the toxic in the alga), after being transferred to fresh OECD medium, without pollutants. The obtained results indicate that the formation of a palmelloid-like phenotype in R. subcapitata is dependent on the mode of action of toxics and their concentration, not constituting a generalized defense mechanism against stress. The observations here shown contribute to understanding the different strategies used by the unicellular alga R. subcapitata to cope with severe stress imposed by organic and inorganic pollutants.


Assuntos
Clorofíceas , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Cádmio , Poluentes Químicos da Água/toxicidade , Clorofíceas/fisiologia , Metais Pesados/toxicidade , Zinco , Eritromicina
4.
Appl Microbiol Biotechnol ; 106(24): 8245-8258, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36385567

RESUMO

The green alga Pseudokirchneriella subcapitata is widely used in ecotoxicity assays and has great biotechnological potential as feedstock. This work aims to characterize the physiology of this alga associated with the aging resulting from the incubation of cells for 21 days, in the OECD medium, with continuous agitation and light exposure, in a batch mode. After inoculation, cells grow exponentially during 3 days, and the culture presents a typical green color. In this phase, "young" algal cells present, predominantly, a lunate morphology with the chloroplast occupying a large part of the cell, maximum photosynthetic activity and pigments concentration, and produce starch as a reserve material. Between the 5th and the 12th days of incubation, cells are in the stationary phase. The culture becomes less green, and the cells stop dividing (≥ 99% have one nucleus) and start to age. "Old" algal cells present chloroplast shrinkage, an abrupt decline of chlorophylls content, and photosynthetic capacity (Fv/Fm and ɸPSII), accompanied by a degradation of starch and an increase of neutral lipids content. The onset of the death phase occurs after the 12th day and is characterized by the loss of cell membrane integrity of some algae (cell death). The culture stays, progressively, yellow, and the majority of the population (~93%) is composed of live cells, chronologically "old," with a significant drop in photosynthetic activity (decay > 75% of Fv/Fm and ɸPSII) and starch content. The information here achieved can be helpful when exploring the potential of this alga in toxicity studies or in biotechnological applications. KEY POINTS: • Physiological changes of P. subcapitata with chronological aging are shown • "Young" algae exhibit a semilunar shape, high photosynthetic activity, and accumulated starch • "Old"-live algae show reduced photosynthetic capacity and accumulated lipids.


Assuntos
Clorófitas , Fatores de Tempo , Clorófitas/fisiologia , Fotossíntese , Cloroplastos , Clorofila
5.
Appl Microbiol Biotechnol ; 106(11): 3985-4004, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35672469

RESUMO

Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.


Assuntos
Compostos Férricos , Sideróforos , Bactérias/metabolismo , Biotecnologia , Compostos Férricos/metabolismo , Ferro/metabolismo
6.
Appl Microbiol Biotechnol ; 105(4): 1379-1394, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521847

RESUMO

The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Íons , Nanopartículas Metálicas/toxicidade , Metais , Nanopartículas/toxicidade , Estresse Oxidativo , Óxidos
7.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32911184

RESUMO

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Assuntos
Acetamidas/toxicidade , Clorofíceas/efeitos dos fármacos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofíceas/fisiologia , Água Doce , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
8.
Appl Biochem Biotechnol ; 193(3): 607-618, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32500426

RESUMO

Pseudomonas fluorescens has the ability to produce the siderophore pyoverdine, a biotechnologically significant iron chelator, which has a wide range of potential applications, such as in agriculture (iron fertilizers) and medicine (development of antibiotics). The present work aimed to evaluate the influence of culture medium composition on the production of siderophores by P. fluorescens DSM 50090, an industrial relevant strain. It was found that the bacterium grown in minimal medium succinate (MMS) had a higher siderophore production than in King B medium. The replacement of succinate by glycerol or dextrose, in minimal medium, originated lower siderophore production. The increase of succinate concentration, the addition of amino acids or the reduction of phosphate in the culture medium did not improve siderophore production by P. fluorescens. The results obtained strongly suggest that (i) MMS is more appropriate than King B for large-scale production of siderophores; (ii) the modification of the culture medium composition, particularly the type of carbon source, influences the level of siderophore secreted; (iii) the production of siderophore by P. fluorescens seems to be a tightly regulated process; once a maximum siderophore concentration has been reached in the culture medium, the bacterium seems to be unable to produce more compound.


Assuntos
Meios de Cultura/química , Meios de Cultura/farmacologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Sideróforos/biossíntese
9.
Aquat Toxicol ; 230: 105706, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302172

RESUMO

Triclosan, a widely used biocide broadly found in aquatic environments, is cause of concern due to its unknown effects on non-targets organisms. In this study, a multi biomarker approach was used in order to evaluate the 72 h-effect of triclosan on the freshwater alga Pseudokirchneriella subcapitata (Raphidocelis subcapitata). Triclosan, at environmental relevant concentrations (27 and 37 µg L-1), caused a decrease of proliferative capacity, which was accompanied by an increase of cell size and a profound alteration of algae shape. It was found that triclosan promoted the intracellular accumulation of reactive oxygen species, the depletion of non-enzymatic antioxidant defenses (reduced glutathione and carotenoids) and a decrease of cell metabolic activity. A reduction of photosynthetic pigments (chlorophyll a and b) was also observed. For the highest concentration tested (37 µg L-1), a decrease of photosynthetic efficiency was detected along with a diminution of the relative transport rate of electrons on the photosynthetic chain. In conclusion, triclosan presents a deep impact on the microalga P. subcapitata morphology and physiology translated by multiple target sites instead of a specific point (cellular membrane) observed in the target organism (bacteria). Additionally, this study contributes to clarify the toxicity mechanisms of triclosan, in green algae, showing the existence of distinct modes of action of the biocide depending on the microalga.


Assuntos
Clorofíceas/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Desinfetantes/toxicidade , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Clorofíceas/metabolismo , Clorofila A/metabolismo , Clorófitas/metabolismo , Desinfetantes/metabolismo , Água Doce/química , Glutationa/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/metabolismo , Poluentes Químicos da Água/metabolismo
10.
Aquat Toxicol ; 222: 105449, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32109756

RESUMO

Metolachlor (MET) is an herbicide widely used and frequently found (at µg L-1) in aquatic systems. This work aimed to study the modes of action of MET on the green microalga Pseudokirchneriella subcapitata. Algae exposed to 115 or 235 µg L-1 MET, for 48 or 72 h, presented a reduction of metabolic activity, chlorophyll a and b content and photosynthetic efficiency. The exposure to 115 or 235 µg L-1 MET also induced growth yield reduction, mean cell biovolume increase and alteration of the typical algae shape (cells lunate or helically twisted) to "French croissant"-type; at these MET concentrations, algal population was mainly composed by multinucleated cells (≥ 4 nuclei), which suggest that MET impairs the normal progression of the reproductive cycle but did not hinder nuclear division. The accumulation of multinucleated cells seems to be the consequence of the incapacity of the parent cell to release the autospores. In conclusion, MET disrupts the physiology of P. subcapitata cells; the disturbance of the progression of the reproductive cycle should be in the origin of growth slowdown (or even its arrest), increase of mean cell biovolume and modification of algal shape. This work contributed to elucidate, in a systematically and integrated way, the toxic mechanism of MET on the non-target organism, the alga P. subcapitata.


Assuntos
Acetamidas/toxicidade , Clorofíceas/efeitos dos fármacos , Herbicidas/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/fisiologia , Clorofila A/metabolismo , Relação Dose-Resposta a Droga , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Fotossíntese/efeitos dos fármacos , Reprodução/efeitos dos fármacos
11.
Front Plant Sci ; 10: 1335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781134

RESUMO

Currently, fertilization with synthetic chelates is the most effective agricultural practice to prevent iron (Fe) deficiencies in crops, especially in calcareous soils. Because these compounds are not biodegradable, they are persistent in the environment, and so, there is the risk of metal leaching from the soils. Thus, new, more environment-friendly efficient solutions are needed to solve iron-deficiency-induced chlorosis (IDIC) in crops grown in calcareous soils. Therefore, the central aim of this work was to prepare new freeze-dried Fe products, using a biotechnological-based process, from two siderophores bacterial (Azotobacter vinelandii and Bacillus subtilis) cultures (which previously evidenced high Fe complexation ability at pH 9) and test their capacity for amending IDIC of soybean grown in calcareous soils. Results have shown that A. vinelandii iron fertilizer was more stable and interacted less with calcareous soils and its components than B. subtilis one. This behavior was noticeable in pot experiments where chlorotic soybean plants were treated with both fertilizer products. Plants treated with A. vinelandii fertilizer responded more significantly than those treated with B. subtilis one, when evaluated by their growth (20% more dry mass than negative control) and chlorophyll development (30% higher chlorophyll index than negative control) and in most parameters similar to the positive control, ethylenediamine-di(o-hydroxyphenylacetic acid). On average, Fe content was also higher in A. vinelandii-treated plants than on B. subtilis-treated ones. Results suggest that this new siderophore-based formulation product, prepared from A. vinelandii culture, can be regarded as a possible viable alternative for replacing the current nongreen Fe-chelating fertilizers and may envisage a sustainable and environment-friendly mending IDIC of soybean plants grown in calcareous soils.

12.
Aquat Toxicol ; 214: 105265, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31416018

RESUMO

The increasing use of nanoparticles (NPs) unavoidably enhances their unintended introduction into the aquatic systems, raising concerns about their nanosafety. This work aims to assess the toxicity of five oxide NPs (Al2O3, Mn3O4, In2O3, SiO2 and SnO2) using the freshwater alga Pseudokirchneriella subcapitata as a primary producer of ecological relevance. These NPs, in OECD medium, were poorly soluble and unstable (displayed low zeta potential values and presented the tendency to agglomerate). Using the algal growth inhibition assay and taking into account the respective 72 h-EC50 values, it was possible to categorize the NPs as: toxic (Al2O3 and SnO2); harmful (Mn3O4 and SiO2) and non-toxic/non-classified (In2O3). The toxic effects were mainly due to the NPs, except for SnO2 which toxicity can mainly be attributed to the Sn ions leached from the NPs. A mechanistic study was undertaken using different physiological endpoints (cell membrane integrity, metabolic activity, photosynthetic efficiency and intracellular ROS accumulation). It was observed that Al2O3, Mn3O4 and SiO2 induced an algistatic effect (growth inhibition without loss of membrane integrity) most likely as a consequence of the cumulative effect of adverse outcomes: i) reduction of the photosynthetic efficiency of the photosystem II (ФPSII); ii) intracellular ROS accumulation and iii) loss of metabolic activity. SnO2 NPs also provoked an algistatic effect probably as a consequence of the reduction of ФPSII since no modification of intracellular ROS levels and metabolic activity were observed. Altogether, the results here presented allowed to categorize the toxicity of the five NPs and shed light on the mechanisms behind NPs toxicity in the green alga P. subcapitata.


Assuntos
Clorofíceas/citologia , Exposição Ambiental , Água Doce , Nanopartículas/toxicidade , Óxidos/toxicidade , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clorofíceas/efeitos dos fármacos , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/toxicidade , Poluentes Químicos da Água/toxicidade
13.
Appl Microbiol Biotechnol ; 103(15): 6257-6269, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152204

RESUMO

In this work, the physicochemical characterization of five (Al2O3, In2O3, Mn3O4, SiO2 and SnO2) nanoparticles (NPs) was carried out. In addition, the evaluation of the possible toxic impacts of these NPs and the respective modes of action were performed using the yeast Saccharomyces cerevisiae. In general, in aqueous suspension, metal(loid) oxide (MOx) NPs displayed an overall negative charge and agglomerated; these NPs were practically insoluble (dissolution < 8%) and did not generate detectable amounts of reactive oxygen species (ROS) under abiotic conditions. Except In2O3 NPs, which did not induce an obvious toxic effect on yeast cells (up to 100 mg/L), the other NPs induced a loss of cell viability in a dose-dependent manner. The comparative analysis of the loss of cell viability induced by the NPs with the ions released by NPs (NPs supernatant) suggested that SiO2 toxicity was mainly caused by the NPs themselves, Al2O3 and SnO2 toxic effects could be attributed to both the NPs and the respective released ions and Mn3O4 harmfulness could be mainly due to the released ions. Al2O3, Mn3O4, SiO2 and SnO2 NPs induced the loss of metabolic activity and the generation of intracellular ROS without permeabilization of plasma membrane. The co-incubation of yeast cells with MOx NPs and a free radical scavenger (ascorbic acid) quenched intracellular ROS and significantly restored cell viability and metabolic activity. These results evidenced that the intracellular generation of ROS constituted the main cause of the cytotoxicity exhibited by yeasts treated with the MOx NPs. This study highlights the importance of a ROS-mediated mechanism in the toxicity induced by MOx NPs.


Assuntos
Nanopartículas Metálicas/toxicidade , Metaloides/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Óxidos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Fenômenos Químicos , Relação Dose-Resposta a Droga , Metabolismo/efeitos dos fármacos , Nanopartículas Metálicas/química , Metaloides/química , Óxidos/química , Solubilidade
14.
AMB Express ; 9(1): 78, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31139942

RESUMO

Iron deficiency is one of the main causes of chlorosis in plants, which leads to losses in field crops quality and yield. The use of synthetic chelates to prevent or correct iron-deficiency is not satisfactory mainly due to their poor biodegradability. The present work aimed to search suitable microorganisms to produce alternative, environment-friendly iron-chelating agents (siderophores). For this purpose, the performance of five bacteria (Azotobacter vinelandii, Bacillus megaterium, Bacillus subtilis, Pantoea allii and Rhizobium radiobacter) was evaluated, regarding siderophore production kinetics, level of siderophore production (determined by chrome azurol S, CAS method), type of siderophore produced (using Arnow and Csaky's tests) and iron-chelating capacity at pH 9.0. All bacteria were in stationary phase at 24 h, except A. vinelandii (at 72 h) and produced the maximum siderophore amount (80-140 µmol L-1) between 24 and 48 h, with the exception of A. vinelandii (at 72 h). The analysis of culture filtrates revealed the presence of catechol-type siderophores for B. subtilis and R. radiobacter and hydroxamate-type siderophores for B. megaterium and P. allii. In the case of A. vinelandii, both siderophore-types (catechol and hydroxamates) were detected. The highest iron-chelating capacity, at pH 9.0, was obtained by B. megaterium followed by B. subtilis and A. vinelandii. Therefore, these three bacteria strains are the most promising bacteria for siderophore production and chlorosis correction under alkaline conditions.

15.
Sci Total Environ ; 682: 779-799, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31146074

RESUMO

In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.


Assuntos
Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Desenvolvimento Vegetal , Raízes de Plantas
16.
Aquat Toxicol ; 208: 179-186, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30682620

RESUMO

The increasing and indiscriminate use of antibiotics is the origin of their introduction in aquatic systems through domestic and livestock effluents. The occurrence of erythromycin (ERY), a macrolide antibiotic, in water bodies raises serious concerns about its potential toxic effect in aquatic biota (non-target organisms), particularly in microalgae, the first organisms in contact with aquatic contaminants. This study aimed to evaluate the possible toxic effects of ERY on relevant cell targets of the freshwater microalga Pseudokirchneriella subcapitata. Algal cells incubated with significant environmental ERY concentrations presented disturbance of the photosynthetic apparatus (increased algal autofluorescence and reduction of chlorophyll a content) and mitochondrial function (hyperpolarization of mitochondrial membrane). These perturbations can apparently be attributed to the similarity of the translational machinery of these organelles (chloroplasts and mitochondria) with the prokaryotic cells. P. subcapitata cells treated with ERY showed a modification of metabolic activity (increased esterase activity) and redox state (alteration of intracellular levels of reactive oxygen species and reduced glutathione content) and an increased biovolume. ERY induced an algistatic effect: reduction of growth rate without loss of cell viability (plasma membrane integrity). The present study shows that chronic exposure (72 h), at low (µg L-1) ERY concentrations (within the range of concentrations detected in surface and ground waters), induce disturbances in the physiological state of the alga P. subcapitata. Additionally, this work alerts to the possible negative impact of the uncontrolled use of ERY on the aquatic systems.


Assuntos
Eritromicina/toxicidade , Água Doce , Microalgas/metabolismo , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorofila A/metabolismo , Fluorescência , Glutationa/metabolismo , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
17.
Chem Res Toxicol ; 32(2): 245-254, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30656935

RESUMO

The expansion of the industrial use of nickel oxide (NiO) nanoparticles (NPs) raises concerns about their potential adverse effects. Our work aimed to investigate the mechanisms of toxicity induced by NiO NPs, using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed to NiO NPs exhibited typical hallmarks of regulated cell death (RCD) by apoptosis [loss of cell proliferation capacity (cell viability), exposure of phosphatidylserine at the outer cytoplasmic membrane leaflet, nuclear chromatin condensation, and DNA damage] in a process that required de novo protein synthesis. The execution of yeast cell death induced by NiO NPs is Yca1p metacaspase-dependent. NiO NPs also induced a decrease in the mitochondrial membrane potential and an increase in the frequency of respiratory-deficient mutants, which supports the involvement of mitochondria in the cell death process. Cells deficient in the apoptosis-inducing factor ( aif1Δ) displayed higher tolerance to NiO NPs, which reinforces the involvement of mitochondria in RCD by apoptosis. In summary, this study shows that NiO NPs induce caspase- and mitochondria-dependent apoptosis in yeast. Our results warn about the possible harmful effects associated with the use of NiO NPs.


Assuntos
Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/toxicidade , Níquel/química , Saccharomyces cerevisiae/metabolismo , Caspases/metabolismo , Dano ao DNA/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , NADH NADPH Oxirredutases/metabolismo , Nanopartículas/química , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Aquat Toxicol ; 204: 80-90, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30205248

RESUMO

Over the last decade, concerns have been raised regarding the potential health and environmental effects associated with the release of metal oxide nanoparticles (NPs) into ecosystems. In the present work, the potential hazards of nickel oxide (NiO) NPs were investigated using the ecologically relevant freshwater alga Pseudokirchneriella subcapitata. NiO NP suspensions in algal OECD medium were characterized with regard to their physicochemical properties: agglomeration, surface charge, stability (dissolution of the NPs) and abiotic reactive oxygen species (ROS) production. NiO NPs formed loose agglomerates and released Ni2+. NiO NPs presented a 72 h-EC50 of 1.6 mg L-1, which was evaluated using the algal growth inhibition assay and allowed this NP to be classified as toxic. NiO NPs caused the loss of esterase activity (metabolic activity), the bleaching of photosynthetic pigments and the intracellular accumulation of reactive oxygen species (ROS) in the absence of the disruption of plasma membrane integrity. NiO NPs also disturbed the photosynthetic process. A reduction in the photosynthetic efficiency (ΦPSII) accompanied by a decrease in the flow rate of electrons through the photosynthetic chain was also observed. The leakage of electrons from the photosynthetic chain may be the origin of the ROS found in the algal cells. The exposure to NiO NPs led to the arrest of the cell cycle prior to the first cell division (primary mitosis), an increase in cell volume and the presence of aberrant morphology in the algal cells. In this work, the use of different approaches allowed new clues related to the toxicity mechanisms of NiO NPs to be obtained. This work also contributes to the characterization of the environmental and toxicological hazards of NiO NPs and provides information on the possible adverse effects of these NPs on aquatic systems.


Assuntos
Clorófitas/efeitos dos fármacos , Água Doce , Nanopartículas/toxicidade , Níquel/toxicidade , Testes de Toxicidade , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clorófitas/citologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suspensões , Poluentes Químicos da Água/toxicidade
19.
Chem Res Toxicol ; 31(8): 658-665, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30043610

RESUMO

The present work aimed to elucidate whether the toxic effects of nickel oxide (NiO) nanoparticles (NPs) on the yeast Saccharomyces cerevisiae were associated with oxidative stress (OS) and what mechanisms may have contributed to this OS. Cells exposed to NiO NPs accumulated superoxide anions and hydrogen peroxide, which were intracellularly generated. Yeast cells coexposed to NiO NPs and antioxidants (l-ascorbic acid and N- tert-butyl-α-phenylnitrone) showed quenching of reactive oxygen species (ROS) and increased resistance to NiO NPs, indicating that the loss of cell viability was associated with ROS accumulation. Mutants lacking mitochondrial DNA (ρ0) displayed reduced levels of ROS and increased resistance to NiO NPs, which suggested the involvement of the mitochondrial respiratory chain in ROS production. Yeast cells exposed to NiO NPs presented decreased levels of reduced glutathione (GSH). Mutants deficient in GSH1 ( gsh1Δ) or GSH2 ( gsh2Δ) genes displayed increased levels of ROS and increased sensitivity to NiO NPs, which underline the central role of GSH against NiO NPs-induced OS. This work suggests that the increased levels of intracellular ROS (probably due to the perturbation of the electron transfer chain in mitochondria) combined with the depletion of GSH pool constitute important mechanisms of NiO NPs-induced loss of cell viability in the yeast S. cerevisiae.


Assuntos
Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Estresse Oxidativo , Saccharomyces cerevisiae/efeitos dos fármacos , Antioxidantes/farmacologia , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Glutationa/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
20.
Appl Microbiol Biotechnol ; 102(6): 2827-2838, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423633

RESUMO

The increasing use of nanoparticles (NPs) has spurred concerns about their toxic effects. This work aimed to assess the potential hazards of nickel oxide (NiO) NPs using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed for 6 h to 100 mg/L NiO NPs presented reduced metabolic activity (esterase activity and FUN-1 dye processing) and enhanced accumulation of reactive oxygen species. NiO NPs induced the loss of cell viability in a dose-dependent manner. Study of the dissolution of NiO NPs in aqueous media, together with the toxicological data, suggests that the nickel released by the NPs cannot explain all the toxic effects observed in S. cerevisiae caused by the NPs. Transmission electron microscopy observations revealed that NiO NPs were adsorbed onto cell surface but did not enter into yeast cells. Isogenic mutants (cwp1∆ and cwp2∆) with increased cell wall porosity did not display enhanced susceptibility to NiO NPs compared to the wild type strain. Our results suggest that NiO NPs exert their toxic effect by an indirect mechanism. This work contributes to knowledge of the potential hazards of NiO NPs and to the elucidation of their mechanisms of toxic action.


Assuntos
Viabilidade Microbiana/efeitos dos fármacos , Nanopartículas/toxicidade , Níquel/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Adsorção , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...