Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118639, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480639

RESUMO

The occurrence of emerging pollutants on effluents of wastewater treatment plants makes unfeasible their reutilization and consequently to comply with the sixth goal of 2030 Agenda for sustainable development. Thus, it is extremely important to find ways to remove these pollutants without compromising the quality of reclaimed water. Ozonation has been successfully explored for this purpose, but it still presents limitations towards some oxidant-resistant pollutants. To surpass this, the conversion of ozone (O3) into more reactive species is required, which can be accomplished by using catalysts. Carbon catalysts, such as activated carbons (ACs), represent a more environmentally attractive option than traditional metal-based catalysts, with the advantage of being easily modified to tune their textural and surface properties to the reaction chemistry. In this study, two different sources of ACs were tested in the catalytic ozonation of a frequently detected emerging pollutant: salicylic acid (SalAc). These ACs were submitted to thermal treatment under H2 and functionalization with N precursors, such as melamine and poly(ethyleneimine), to induce changes in the surface properties, especially in the nitrogen content. Although no correlation was found between the N-content and catalytic activity, the thermal treatment under H2 increased the mesopores surface area (Smeso), which reflected in greater catalytic activity. As that, the best-performing AC was the one with the highest Smeso, which revealed also to be resistant to O3 and able to convert O3 into more reactive species, evidenced by the capacity of oxalic acid, a well-known ozone-resistant by-product. The same AC was then submitted to three consecutive reutilization cycles and a more significant activity loss was observed in terms of SalAc degradation rate (⁓ 40%) then total organic carbon removal (⁓ 25%), from the first to the third cycle. This decline in efficiency was ascribed to the presence of by-products adhered to the catalyst surface, which impede its ability to react effectively with O3.


Assuntos
Poluentes Ambientais , Ozônio , Ácido Salicílico , Temperatura , Carvão Vegetal , Nitrogênio , Ácido Oxálico
2.
J Environ Manage ; 343: 118140, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244099

RESUMO

The removal of p-nitrophenol (PNP) from wastewater was evaluated by the activated persulfate process using different materials - carbon xerogels (XG), carbon nanotubes (CNT), and activated carbon (AC) -, and also using such materials doped with nitrogen (XGM, CNTM and ACM). These carbon materials were impregnated with 2 wt.% of iron and tested in the oxidative process to assess the influence of their textural and surface chemical properties. The carbon-based materials' properties influence the efficiencies of the adsorption and oxidative processes; in adsorption, the materials with higher specific surface areas (SBET), i.e. AC (824 m2/g) and Fe/AC (807 m2/g), have shown to be the most promising (having achieved a PNP removal of about 20%); on the other hand, in the activated persulfate process the carbon or iron-containing carbon materials with the highest mesoporous areas (Smeso) were the preferential ones - XG and Fe/XG, respectively - reaching removals of 47.3% and 75.7% for PNP and 44.9 and 63.3% for TOC, respectively. Moreover, the presence of nitrogen groups on the samples' surface benefits both processes, being found that PNP degradation and mineralization increase with the nitrogen content. The stability of the best materials (XGM and Fe/XGM) was evaluated during four cycles, being noticed that while XGM lost catalytic activity, the Fe/XGM sample remained stable without leaching of iron. The quantification of intermediate compounds formed during persulfate oxidation was performed, and only oxalic acid was detected, in addition to PNP, being that their contribution to the TOC measured was higher than 99%. Experiments carried out in the presence of radical scavengers proved that only the sulfate radical is present under the acidic conditions used. Complete PNP oxidation and TOC removal of ∼96% were reached for the activated persulfate process, proving to be more attractive than the Fenton one.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Ferro/química , Oxirredução , Carvão Vegetal , Nitrogênio
3.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234402

RESUMO

A novel approach for the treatment of volatile organic compounds from gaseous streams was developed. In order to accomplish this, a semi-batch bubble reactor was used, aiming to assess the toluene (selected as model compound) degradation from gaseous streams via heterogeneous Fenton oxidation. Activated carbon-based catalysts-metal-free or iron-impregnated-with different textural and chemical surface properties were used for the first time as catalysts, in order to degrade gaseous toluene using such technology. Complementary characterization techniques, such as nitrogen adsorption at -196 °C, elemental analysis, pH at the point of zero charge (pHPZC), inductively coupled plasma optical emission spectrometry (ICP-OES) and transmission electron microscopy (TEM), were used. The materials' chemical surface properties, particularly the presence of N-surface groups, were herein found to play an important role in toluene adsorption and catalytic performance. The maximum amount of toluene transferred, 6.39 × 10-3 mol, was achieved using melamine-doped activated carbon (N-doped material) that was impregnated with iron (sample herein called ACM-Fe). This iron-based catalyst was found to be quite stable during three reutilization cycles.

4.
J Environ Manage ; 322: 116084, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36067669

RESUMO

The degradation of toluene from a gas stream by the heterogeneous Fenton process was evaluated over a carbon-coated monolith impregnated or not with iron as catalyst in a bubble column reactor (BCR). The carbon-coated monolith support (CM) was prepared by chemical vapor deposition and the catalyst (CM impregnated with iron - herein called CM-Fe) by adsorption. In the screening of processes (absorption, adsorption and reaction), it was shown that the heterogeneous Fenton process catalyzed by CM-Fe presents the best efficiency (toluene transfer (η) = 10 × 10-3 mol, for 300 mL of liquid solution and 0.69 g of catalyst). Finally, the stability of CM and CM-Fe was evaluated, wherein ten consecutive runs were carried out, the results showing a considerable deactivation of CM during the first five cycles. In contrast, the CM-Fe sample only slightly decreases its activity from the 1st to 2nd cycle (due to a small amount of iron leached from the monolith, 0.7%), remaining stable after that, which is important for applying this technology at the industrial level. This work showed for the first time that the treatment of gaseous effluents containing organic compounds by the Fenton process (which takes place in the liquid phase) using a carbon-coated monolith impregnated with iron is plausible, so the proof of concept was successfully accomplished.


Assuntos
Carbono , Ferro , Carbono/química , Catálise , Gases , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Tolueno/química
5.
Environ Technol ; 39(22): 2951-2958, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28838291

RESUMO

Nitrogen-free and nitrogen-doped carbon xerogel materials, from urea and melamine precursors, were prepared at different pH and evaluated as adsorbents/catalysts in the removal of phenol. Then, zero-valent iron (ZVI) was supported on these carbon xerogel materials and its activity was again evaluated for phenol removal by adsorption and catalytic wet peroxide oxidation (CWPO). The prepared samples were characterized by N2 adsorption at -196°C, pH at the point of zero charge (pHPZC) and elemental analysis. The textural properties of the N-free and N-doped carbon xerogels are strongly influenced by pH of the preparation solution and precursor used. The presence of ZVI on all carbon xerogel supports improved the phenol removal efficiency. ZVI supported on urea- and melamine-doped carbon xerogels show a good performance, reaching above 87% phenol conversion after 60 min of CWPO. On the contrary, pure adsorption and CWPO using the same materials without the presence of ZVI gives low phenol removal efficiency. A correlation was found between the activity of ZVI catalysts in CWPO and the N-content of the supports.


Assuntos
Ferro , Fenol , Carbono , Peróxido de Hidrogênio , Nitrogênio , Fenóis
6.
J Colloid Interface Sci ; 496: 141-149, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28214624

RESUMO

Cobalt-cerium mixed oxides were prepared by the wet impregnation method and evaluated for volatile organic compounds (VOCs) abatement, using ethyl acetate (EtAc) as model molecule. The impact of Co content on the physicochemical characteristics of catalysts and EtAc conversion was investigated. The materials were characterized by various techniques, including N2 adsorption at -196°C, scanning electron microscopy (SEM), X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) to reveal the structure-activity relationship. The obtained results showed the superiority of mixed oxides compared to bare CeO2 and Co3O4, demonstrating a synergistic effect. The optimum oxidation performance was achieved with the sample containing 20wt.% Co (Co/Ce atomic ratio of ca. 0.75), in which complete conversion of EtAc was attained at 260°C. In contrast, temperatures above 300°C were required to achieve 100% conversion over the single oxides. Notably, a strong relationship between both the: (i) relative population, and (ii) facile reduction of lattice oxygen with the ethyl acetate oxidation activity was found, highlighting the key role of loosely bound oxygen species on VOCs oxidation. A synergistic Co-Ce interaction can be accounted for the enhanced reducibility of mixed oxides, linked with the increased mobility of lattice oxygen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...