Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pathogens ; 12(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003837

RESUMO

The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed and pre-processed. Differential expression was assessed with the EdgeR package, and functional enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways. A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells, of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses revealed the predominant up-regulation of genes related to innate immune response, response to virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19 pathogenesis, in addition to revealing potential biomarkers and drug targets.

2.
Curr Alzheimer Res ; 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36503461

RESUMO

BACKGROUND: Alzheimer's disease is the most common neurodegenerative disease in the world, characterized by the progressive loss of neuronal structure and function, whose main histopathological landmark is the accumulation of ß-amyloid in the brain. OBJECTIVE: It is well known that exercise is a neuroprotective factor and that muscles produce and release myokines that exert endocrine effects in inflammation and metabolic dysfunction. Thus, this work intends to establish the relationship between the benefits of exercise through the chronic training of HIIT on cognitive damage induced by the Alzheimer's model by the injection of ß amyloid 1-42. METHODS: For this purpose, forty-eight male Wistar rats were divided into four groups: Sedentary Sham (SS), Trained Sham (ST), Sedentary Alzheimer's (AS), and Trained Alzheimer's (AT). Animals were submitted to stereotactic surgery and received a hippocampal injection of Aß1-42 or a saline solution. Seven days after surgery, twelve days of treadmill adaptation followed by five maximal running tests (MRT) and fifty-five days of HIIT, rats underwent the Morris water maze test. The animals were then euthanized, and their gastrocnemius muscle tissue was extracted to analyze the Fibronectin type III domain containing 5 (FNDC5), PPARG Coactivator 1 Alpha (PPARGC1A), and Integrin subunit beta 5 (ITGB5-R) expression by qRT-PCR in addition to cross-sectional areas. RESULTS: The HIIT prevents the cognitive deficit induced by the infusion of amyloid ß 1-42 (p<0.0001), causes adaptation of muscle fibers (p<0.0001), modulates the gene expression of FNDC5 (p<0.01), ITGB5 (p<0.01) and PPARGC1A (p<0.01), and induces an increase in peripheral protein expression of FNDC5 (p<0.005). CONCLUSION: Thus, we conclude that HIIT can prevent cognitive damage induced by the infusion of Aß1-42, constituting a non-pharmacological tool that modulates important genetic and protein pathways.

3.
Exp Gerontol ; 153: 111502, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339821

RESUMO

The excessive deposition of ß-amyloid proteins (Aß) is directly correlated with the establishment and development of Alzheimer's Disease (AD). Current treatments for AD only reduce symptoms instead of acting on Aß, the primary etiological agent. Hence, the anti-amyloid effect of regular exercise has been widely investigated as an alternative therapy. This systematic review and meta-analysis examined the anti-amyloid effect of regular physical exercise in animal models of AD. The search was conducted on the electronic databases Pubmed, Embase, Scopus and Web of Science without data limitation and using the following describers: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated using the SYRCLE's tool. Meta-analyses were conducted using models of random continuous effects. A total of 36 studies were selected and most used: transgenic mice (n = 29), treadmill training, duration of 12 weeks (interval of 4 to 28 weeks), rate of 60 min/day (interval of 30 min and up until free access) and speed of 12 m/min (interval of 3.2 to 32 m/min). The hippocampus and cortex were the most frequently investigated regions. Meta-analysis demonstrated a decrease in Aß with greater effect in unspecified isoforms Meta-analysis demonstrated a decrease in Aß with greater effect in unspecified isoforms (N = 4; SMD = -2.71, IC 95%: -3.59, -1.84, p < 0.00001, Q2 = 3.38, I2 = 11%) and Aß1-42 (N = 21; SMD = -1.94, IC 95%: -2.37, -1.51, p < 0.00001, Q2 = 33,37, I2 = 40%). Concerning training, greater effect was found with: 1) swimming (N = 4; SMD = -1.98, IC 95%: -3,28 - -0,68, p = 0.003, Q2 = 9.74, I2 = 69%), 2) moderate intensity (N = 4; SMD = -2.03, IC 95%: -3.31 - -0.75, p < 0.005, Q2 = 12.68, I2 = 76%); 3) duration up to six weeks (N = 6; N = 6; SMD = -2.35, IC 95%: -3.15 - -1.55, p < 0.00001, Q2 = 8.38, I2 = 40%); 4) young animals (SMD = -2.00, IC 95%: -2.59 - -1.42, p < 0.00001, Q2 = 24.90, I2 = 52%); 5) in the amygdala region (N = 1; SMD = -8.56, IC 95%: -12.88 - -4.23, p = 0.0001) and females (N = 4; SMD = -2.14, IC 95%: -3.48 - -0.79, p = 0.002, Q2 = 10.31, I2 = 71%). However, the reduction of Aß was associated with decrease of amyloidogenic pathway and increase of non-amyloidogenic. Hence, regular physical exercise demonstrated anti-amyloid effect in experimental models of AD through positive alterations in APP processing through different signaling pathways.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide , Animais , Modelos Animais de Doenças , Exercício Físico , Feminino , Camundongos , Camundongos Transgênicos , Modelos Teóricos , Placa Amiloide
4.
PeerJ ; 9: e10500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859869

RESUMO

BACKGROUND: Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. METHODOLOGY: RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. RESULTS: Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. CONCLUSION: Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.

5.
Life Sci ; 275: 119372, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33745893

RESUMO

AIMS: Alzheimer's disease (AD) is the most common irreversible chronic neurodegenerative disease. It is characterized by the abnormal accumulation of ß-amyloid protein (Aß), which triggers homeostatic breakage in several physiological systems. However, the effect of chronic exercise on the formation of Aß as an alternative therapy has been investigated. This systematic review examines the antiamyloid effect of different types and intensities of exercise, seeking to elucidate its neuroprotective mechanisms. MAIN METHODS: The research was conducted in the electronic databases Pubmed, Embase, Scopus and Web of Science, using the following descriptors: "amyloid beta" (OR senile plaque OR amyloid plaque) and "exercise" (OR physical activity OR training). The risk of bias was evaluated through SYRCLE's Risk of Bias for experimental studies. KEY FINDINGS: 2268 articles were found, being 36 included in the study. A higher frequency of use of mice with genetic alterations was identified for the Alzheimer's disease (AD) model (n = 29). It was used as chronic training: treadmill running (n = 24), voluntary running wheel (n = 7), swimming (n = 4) and climbing (n = 2). The hippocampus and the cortex were the most investigated regions. However, physiological changes accompanied by the reduction of Aß and associated with AD progression were verified. It is concluded that exercise reduces the production of Aß in models of animals with AD. SIGNIFICANCE: Nevertheless, this effect contributes to the improvement of several physiological aspects related to Aß and that contribute to neurological impairment in AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Condicionamento Físico Animal , Placa Amiloide/prevenção & controle , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Encéfalo/patologia , Camundongos , Placa Amiloide/patologia , Placa Amiloide/terapia
6.
Biol Sport ; 35(1): 3-11, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30237656

RESUMO

Regular exercise is an exogenous factor of gene regulation with numerous health benefits. The study aimed to evaluate human genes linked to physical exercise in an 'omic scale, addressing biological questions to the generated database. Three literature databases were searched with the terms 'exercise', 'fitness', 'physical activity', 'genetics' and 'gene expression'. For additional references, papers were scrutinized and a text-mining tool was used. Papers linking genes to exercise in humans through microarray, RNA-Seq, RT-PCR and genotyping studies were included. Genes were extracted from the collected literature, together with information on exercise protocol, experimental design, gender, age, number of individuals, analytical method, fold change and statistical data. The 'omic scale dataset was characterized and evaluated with bioinformatics tools searching for gene expression patterns, functional meaning and gene clusters. As a result, a physical exercise-related human gene compendium was created, with data from 58 scientific papers and 5.147 genes functionally correlated with 17 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. While 50.9% of the gene set was up-regulated, 41.9% was down-regulated. 743 up- and 530 down-regulated clusters were found, some connected by regulatory networks. To summarize, up- and down-regulation was encountered, with a wide genomic distribution of the gene set and up- and down-regulated clusters possibly assembled by functional gene evolution. Physical exercise elicits a widespread response in gene expression.

7.
Rev. bras. med. esporte ; 23(4): 328-334, July-Aug. 2017. tab, graf
Artigo em Português | LILACS | ID: biblio-898991

RESUMO

RESUMO Introdução: Novos estudos de regulação gênica do exercício físico por meio de técnicas pós-genômicas em ensaios de resistência (endurance) e força caracterizam a transcriptômica do exercício físico. Entre os genes afetados, destacamos a via da proteína quinase ativada por AMP (AMPK), cuja ativação ocorre durante o exercício como resultado das alterações dos níveis de fosfato energético da fibra muscular. Objetivo: Avaliar a via de sinalização da AMPK por revisão sistemática da expressão de genes e análise in silico. Método: Foi efetuada uma revisão sistemática para avaliar a regulação gênica da via de sinalização AMPK, caracterizando os genes estudados na literatura, as variações de regulação obtidas, na forma de fold change e tipos de exercício usados. Resultados: A via de sinalização AMPK mostrou 133 genes no repositório KEGG (Kyoto Encyclopedia of Genes and Genomes), os quais foram confrontados com a revisão sistemática da literatura, totalizando 65 genes. Dezessete genes apresentaram UR e 24 mostraram DR com relação ao seu respectivo controle. Além destes, 20 genes estavam presentes nos trabalhos, apresentando tanto UR e DR e quatro genes não apresentaram dados de regulação. Verificou-se regulação específica em função do tipo de exercício efetuado. Discussão: Dos 133 genes da via AMPK, 48,8% foram amostrados nos trabalhos revisados, indicando que uma parte significativa da via é regulada pelo exercício. O estudo apresentou a regulação gênica básica de dois mecanismos para a recuperação energética, a biogênese mitocondrial e o bloqueio da gliconeogênese. Conclusão: Este trabalho mostrou que o exercício atua ativamente na via de sinalização da AMPK, na importância da regulação via PGC-1α e no papel de outros genes, regulando a expressão de mais da metade dos genes amostrados.


ABSTRACT Introduction: New studies of gene regulation by physical exercise through post-genomic techniques in endurance and strength tests characterize the physical exercise transcriptomics. Among the affected genes, we highlight the AMP-activated protein kinase (AMPK) pathway, the activation of which occurs during exercise because of changes in muscle fiber energetic phosphate levels. Objective: To evaluate the AMPK signaling pathway by systematic review of gene expression and in silico analysis. Method: A systematic review was performed in order to assess the gene regulation of AMPK signaling pathway, characterizing the genes studied in the literature, regulation variations obtained in the form of fold change, and types of exercise performed. Results: The AMPK signaling pathway showed 133 genes in the KEGG repository (Kyoto Encyclopedia of Genes and Genomes), which were compared with the systematic review of the literature, totaling 65 genes. Seventeen genes presented UR and 24 showed DR in relation to their respective control. In addition to these, 20 genes were present in the literature, presenting both UR and DR and four genes showed no regulatory data. Specific regulation was verified according to the type of exercises performed. Discussion: Of the 133 genes of the AMPK pathway, 48.8% were sampled in the revised studies indicating that a significant part of the pathway is regulated by exercise. The study presented the basic gene regulation of two mechanisms for energy recovery, mitochondrial biogenesis, and gluconeogenesis blockade. Conclusion: This work showed that the exercise actively works in the AMPK signaling pathway, in the importance of regulation via PGC-1α and in the role of other genes, regulating the expression of more than half of the genes sampled.


RESUMEN Introducción: Nuevos estudios de regulación génica del ejercicio físico por medio de técnicas pos-genómicas en ensayos de resistencia (endurance) y fuerza caracterizan la transcriptómica del ejercicio físico. Entre los genes afectados, destacamos la vía de la proteína quinasa activada por AMP (AMPK), cuya activación ocurre durante el ejercicio como resultado de las alteraciones de los niveles de fosfato energético de la fibra muscular. Objetivo: Evaluar la vía de señalización AMPK por revisión sistemática de la expresión de genes y análisis in silico. Método: Se ha efectuado una revisión para evaluar la regulación génica de la vía de señalización AMPK, caracterizando los genes estudiados en la literatura, las variaciones de regulación obtenidas en forma de fold change y tipos de ejercicios utilizados. Resultados: La vía de señalización AMPK mostró 133 genes en el repositorio KEGG (Kyoto Encyclopedia of Genes and Genomes), los cuales fueran confrontados con la revisión sistemática de la literatura, totalizando 65 genes. Diecisiete genes presentaron UR y 24 mostraron DR con respecto a su respectivo control. Además de estos, 20 genes estaban presentes en los trabajos, presentando tanto UR y DR y cuatro genes no presentaron dados de regulación. Se observó una regulación específica en función del tipo de ejercicio efectuado. Discusión: De los 133 genes de la vía AMPK, 48,8% fueron muestreados en los trabajos revisados, indicando que una parte significativa de la vía es regulada por el ejercicio. El estudio presentó la regulación génica básica de dos mecanismos para la recuperación energética, la biogénesis mitocondrial y el bloqueo de la gluconeogénesis. Conclusión: Este trabajo mostró que el ejercicio actúa activamente en la vía de señalización AMPK, en la importancia de la regulación vía factor PGC-1a y en el papel de otros genes, regulando la expresión de más de la mitad de los genes muestreados.

8.
Artigo em Inglês | MEDLINE | ID: mdl-27121380

RESUMO

BACKGROUND: Diabetes mellitus is a chronic degenerative disease responsible for hyperglycemic episodes through insulin secretion deficiency or cellular resistance. Clinical diagnosis in diabetic patients established that this disease affects the CNS, damaging the brain and impairing cognition, and thus establishing a clinical diabetic condition named diabetic encephalopathy. Despite the physiological mechanisms responsible for the development diabetic encephalopathy are still unclear, an excessive formation of reactive oxygen species, an alteration of acetylcholinesterase activity, and a reduction of growth factor levels, may be related with the pathogenesis of this condition. Pharmacological treatments with natural compounds have been proven useful to treat and cure a wide variety of diseases through their antioxidant actions. METHODS: This study built a compendium of chemical compounds used for the treatment of diabetic encephalopathy demonstrating the most important physiological targets that future drugs should aim for, reviewing them. RESULTS: As previously suspected, antioxidants and acetylcholinesterase inhibitors were useful to prevent memory loss in streptozotocin-induced animals. In addition, growth factors showed an improvement of memory in diabetic rodents. Most studies focused on antioxidant compounds despite cross studies researched both antioxidants and acetylcholinesterase activities. CONCLUSION: Therefore, it could be suggested that future studies regarding treatments for diabetic encephalopathy should focus on the antioxidant profile and acetylcholinesterase, since they seem to play pivotal roles in cognitive impairment in diabetes. No less important, studies with growth factors are also important physiological targets for treating the diabetic encephalopathy.

9.
Life Sci ; 137: 158-63, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26231696

RESUMO

AIMS: This study analyzed the sensorial, structural and functional response of rats subjected to paw immobilization. MAIN METHODS: Animal pelvis, hip, knee and ankle were immobilized using waterproof tape during two weeks for assessment of sensorial response to thermal (hot plate test) and mechanical stimuli (Von Frey test), motor system structure (histology and radiography) and muscle function (soleus contractility). KEY FINDINGS: Disuse animals became more responsive to thermal stimuli (49%), although less responsive to mechanical challenge (58%). Disuse animals showed local injuries such as reduction in muscle fiber diameter (16.7% in gastrocnemius, 5.7% in soleus), contractile activity (55% of the control maximal tonic contraction) and tibia cortical thickness (9.3%), besides increased nitrite:protein ratio, suggestive of protein degradation. Disuse also evoked systemic adaptations that include increase in serum lactate dehydrogenase (36.1%) and alkaline phosphatase (400%), but reduction in calcium (8.4%) and total serum protein (5.5%), especially albumin (34.2%). SIGNIFICANCE: Two weeks of functional paw disuse leads to local and systemic harmful adaptive changes in sensorial and structural systems. This study brings new insights into nervous and motor system mechanism associated with therapeutic limb immobilization in muscle and skeletal pathological conditions.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Temperatura Alta , Contração Muscular/fisiologia , Percepção da Dor/fisiologia , Fosfatase Alcalina/sangue , Animais , Proteínas Sanguíneas/metabolismo , Cálcio/sangue , Feminino , L-Lactato Desidrogenase/sangue , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Nitritos/metabolismo , Ratos , Tíbia/patologia
10.
Sci Pharm ; 81(1): 211-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641339

RESUMO

This work investigated the association of acute ethanol and aminophylline administration on behavioral models of depression and prefrontal monoamine levels (i.e. norepinephrine and dopamine) in mice. The animals received a single dose of ethanol (2 g/kg) or aminophylline (5 or 10 mg/kg) alone or in association. Thirty minutes after the last drug administration, the animals were assessed in behavioral models by the forced swimming and tail suspension tests. After these tests, the animals were sacrificed and the prefrontal cortices dissected to measure monoamine content. Results showed that ethanol presented depression-like activity in the forced swimming and tail suspension tests. These effects were reversed by the association with aminophylline in all tests. Norepinephrine and dopamine levels decreased, while an increase in the dopamine metabolite, (4-hydroxy-3-methoxyphenyl)acetic acid (DOPAC), after ethanol administration was observed. On the contrary, the association of ethanol and aminophylline increased the norepinephrine and dopamine content, while it decreased DOPAC when compared to the ethanol group, confirming the alterations observed in the behavioral tests. These data reinforce the involvement of the adenosinergic system on ethanol effects, highlighting the importance of the norepinephrine and dopamine pathways in the prefrontal cortex to the effects of ethanol.

11.
Fortaleza; s.n; 2011. 171 p.
Tese em Português | LILACS | ID: lil-759905

RESUMO

O etanol é uma substância usada desde tempos remotos que causa alterações em diferentes tecidos, incluindo o Sistema Nervoso Central (SNC). Seu uso abusivo e continuado conduz ao desenvolvimento de diferentes patologias, pois se constitui como uma droga de alto poder degenerativo. Em estudos preliminares, percebeu-se que a aminofilina, um antagonista não-seletivo de receptores de adenosina, interfere na via de ação do etanol em diferentes áreas de sinalização central. A partir desses resultados, o presente trabalho destacou a aminofilina como uma droga de interesse, contribuindo com os avanços biotecnológicos na área da saúde, no tratamento de patologias envolvendo drogas de abuso, como o etanol. O objetivo principal do presente trabalho foi verificar o efeito da aminofilina sobre as alterações bioquímicas produzidas pelo etanol no SNC, especificamente: córtex pré-frontal (CPF), hipocampo (HC) e corpo estriado (CE). Foram utilizados camundongos Swiss, machos, com peso variando entre 25-30 g. Os animais foram tratados cronicamente e em dose úncia diária com água destilada (C), etanol (E6 - v.o.) ou aminofilina (A5 e A10 - i.p.). Outros dois grupos foram pré-tratados com aminofilina nas doses de 5 ou 10 mg/kg (trinta minutos antes da administração de etanol na dose de 6 g/kg - A5E6 e A10E6). Sessenta minutos após a última administração, os animais foram sacrificados e, imediatamente, tiveram seus cérebros dissecados sobre gelo. O CPF, HC e CE foram utilizados para dosagem de aminoácidos (GABA, glutamato, glicina, taurina e aspartato), nitrito/nitrato, proteínas, TBARS, catalase, GSH e acetilcolinesterase-AChE. Os resultados mostraram que a aminofilina conseguiu reverter o efeito do etanol apenas no teste de nitrito/nitrato referente ao estresse oxidativo, sendo os resultados mais expressivos no CPF e HC...


Assuntos
Animais , Masculino , Camundongos , Aminoácidos , Aminofilina , Estresse Oxidativo
12.
Behav Pharmacol ; 20(4): 297-302, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19617722

RESUMO

Aminophylline is a complex of theophylline-ethylenediamine, where theophylline is the main component. Theophylline is a methyxanthine and besides inhibiting phosphodiesterase enzymes, it is also a nonselective adenosine antagonist. Several reports suggested the involvement of the brain adenosinergic system in the ethanol-induced motor incoordination. Thus, the objective of this work was to study the effects of the interaction of ethanol with aminophylline as assessed by behavioral tests in mice. Eight groups of male Swiss mice were used. The animals were treated with either distilled water (control) or ethanol (E; 2, 4, and 6 g/kg, orally) for 5 days, or with distilled water for 4 days, and on the fifth day with aminophylline (A; 5 and 10 mg/kg, intraperitoneally). In the association groups (association protocols), the animals were treated with ethanol (E; 6 g/kg, orally) for 4 days, and on the fifth day received aminophylline (A; 10 mg/kg, intraperitoneally), 30 min after the last ethanol administration (first protocol, E/A). In the second association protocol (A/E), ethanol was administered for 4 days, and on the fifth day the animals received aminophylline (A; 10 mg/kg, intraperitoneally), followed again by ethanol (E; 6 g/kg, orally) administration, 30 min later. E (6 g/kg) evoked a central nervous system depressor effect, by decreasing both the locomotor activity and rearing in the open field test, and A (5 and 10 mg/kg) showed opposite effects. However, the E/A or A/E associations blocked the ethanol effect. In the rota rod test, ethanol presented a muscular relaxant effect, which was decreased in both association protocols. In the tail suspension test, while the E/A association decreased immobility, A/E association increased it, as compared with controls. In conclusion, the effects of ethanol were inhibited by its association with aminophylline, suggesting that ethanol acts on the adenosine neurotransmission.


Assuntos
Aminofilina/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Antagonistas de Receptores Purinérgicos P1 , Administração Oral , Animais , Interações Medicamentosas , Elevação dos Membros Posteriores , Injeções Intraperitoneais , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos
13.
Epilepsy Behav ; 15(3): 291-3, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19446042

RESUMO

Possible central nervous system effects of the gymnosperm lectin from Araucaria angustifolia seeds were studied in seizure and open field tests. Male Swiss mice were administered saline (control), lectin (0.1, 1, and 10 mg/kg), flumazenil (1 mg/kg), or diazepam (1 mg/kg) intraperitoneally. Lectin at the highest dose increased time to death in the pentylenetetrazole- and strychnine-induced seizure models as compared with control, but not in the pilocarpine model. In the open field test, lectin reduced locomotor activity at all doses tested, as did diazepam, when compared with control. These locomotor effects were reversed by flumazenil pretreatment. In conclusion, A. angustifolia lectin had a protective effect in the pentylenetetrazole- and strychnine-induced seizure models, suggestive of activity in the GABAergic and glycinergic systems, respectively, and also caused a reduction in animal movements, which was reversed by flumazenil, pointing to a depressant action mediated by a GABAergic mechanism.


Assuntos
Lectinas/farmacologia , Lectinas/uso terapêutico , Sementes/química , Convulsões/tratamento farmacológico , Análise de Variância , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Diazepam/farmacologia , Diazepam/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Flumazenil/farmacologia , Flumazenil/uso terapêutico , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Pentilenotetrazol , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Tempo de Reação/efeitos dos fármacos , Convulsões/induzido quimicamente , Estricnina
14.
Neurosci Lett ; 444(1): 48-51, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18706482

RESUMO

The main goal of this study was to determine the amino acids (glutamate, aspartate, glutamine and tyrosine) levels in the rat striatum, after ethanol administration alone and/or associated with ketamine. In protocol 1 (Et+ketamine-1), ethanol was administered to male Wistar rats until the 7th day, and at the next day the group received only ketamine (25mg/kg, i.p.) up to the 14th day. In protocol 2 (Et+ketamine-2), ethanol was also administered up to the 7th day, and was associated with ketamine from the 8th up to the 14th day. In other groups, animals were treated daily with ethanol (4 g/kg, p.o.), for 7 or 14 days or ketamine daily for 7 days. Controls were administered with distilled water for 7 days. Results showed that, in protocol 1, aspartate (ASP) levels increased after ketamine administration, as compared to the controls. This effect was inhibited in the group Et+ketamine-1. Ethanol (7 days) increased glutamate (GLU) levels, as compared to control, and this effect did not differ significantly from that observed in the ketamine group. When ketamine was administered after the ethanol withdrawal (protocol 1), no alterations in those amino acid concentrations were seen, as compared to the control and ketamine groups. A tendency for increasing GLU levels was observed, after administration of ethanol (14 days) or ketamine alone or associated (protocol 2), when compared to control values. In protocol 2, TYR levels decreased as related to controls and to the 14-day ethanol-treated group. We can assume that ketamine presents only an antagonist effect, in animals pretreated with ethanol, followed by ketamine administered from the 8th day on. This is due to the fact that NMDA receptors are already sensitized, leading to a decrease in these receptors functions and consequently to ASP and GLU releases.


Assuntos
Aminoácidos/metabolismo , Gânglios da Base/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Animais , Gânglios da Base/metabolismo , Esquema de Medicação , Interações Medicamentosas , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
15.
J Ethnopharmacol ; 99(1): 125-9, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15848031

RESUMO

This work evaluated the antinociceptive effect of proteins from the Calotropis procera (Asclepiadaceae) latex using three different experimental models of nociception in mice. The latex protein fraction administered intraperitoneally in male mice at the doses of 12.5, 25 and 50 mg/kg showed the antinociceptive effect in a dose dependent manner compared to the respective controls in all assays. Inhibitions of the acetic acid-induced abdominal constrictions were observed at the doses of 12.5 (67.9%), 25 (85%) and 50 (99.5%) mg/kg compared to controls. Latex protein at the doses of 25 (39.8%; 42%) and 50 mg/kg (66.6%; 99.3%) reduced the nociception produced by formalin in the 1st and 2nd phases, respectively, and this effect was not reversed by pretreatment with naloxone (1 mg/kg). In the hot plate test, an increase of the reaction time was observed only at 60 min after the treatment with latex at the doses of 25 (79.5%) and 50 (76.9%) mg/kg, compared to controls and naloxone was ineffective to reverse the effect. It was concluded that the protein fraction derived from the whole latex of Calotropis procera possesses antinociceptive activity, which is independent of the opioid system.


Assuntos
Analgésicos/farmacologia , Calotropis/química , Látex/farmacologia , Ácido Acético , Animais , Relação Dose-Resposta a Droga , Formaldeído , Temperatura Alta , Masculino , Camundongos , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Medição da Dor/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Tempo de Reação/efeitos dos fármacos
16.
Arch. Clin. Psychiatry (Impr.) ; 32(1): 10-16, 2005.
Artigo em Português | LILACS | ID: lil-415215

RESUMO

A cetamina é uma droga anestésica desenvolvida em 1965 pelos laboratórios norte-americanos Parke & Davis, tendo como objetivo principal sua utilização em anestesias humanas e veterinárias. Entretanto, seu uso tornou-se constante entre os jovens, sendo consumida em festas como um potente alucinógeno. Já quanto a pesquisas laboratoriais, essa droga tem sido utilizada como modelo para induzir esquizofrenia em animais. Com o objetivo de realizar-se um estudo de revisão da cetamina como anestésico e potencial modelo de esquizofrenia, foi feita uma pesquisa bibliográfica na internet, utilizando programas de pesquisa científica (Pubmed, Medline e Lilacs), além de pesquisa em trabalhos relacionados ao assunto. A administração da cetamina no homem promove o bloqueio dos receptores glutamatérgicos ionotrópicos do tipo N-metil-D-aspartato (NMDA) e antagoniza os receptores de acetilcolina nicotínicos e muscarínicos, bem como os receptores monoaminérgicos e opióides. O bloqueio dos receptores glutamatérgicos promoverá um quadro sintomático semelhante ao de um paciente esquizofrênico. Além disso, a administração da cetamina durante a sinaptogênese pode lesar neurônios corticais, límbicos, talâmicos e estriatais, promovendo uma disfunção na neurotransmissão glutamatérgica e propiciando a manifestação de sintomas psicóticos na vida adulta. Entre esses sintomas, podemos citar o surgimento da esquizofrenia. Somando-se a isso, a droga proporciona uma série de efeitos sistêmicos, desde uma simples anestesia, passando pela sedação, depressão respiratória e até a morte.


Assuntos
Alucinógenos/efeitos adversos , Esquizofrenia/complicações , Transtornos Relacionados ao Uso de Substâncias , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...