Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 18: 368-382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415309

RESUMO

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

2.
Haematologica ; 105(4): 987-9998, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31289201

RESUMO

Targeting chemoresistant malignant cells is one of the current major challenges in oncology. Therefore, it is mandatory to refine the characteristics of these cells to monitor their survival and develop adapted therapies. This is of particular interest in acute myeloid leukemia (AML), for which the 5-year survival rate only reaches 30%, regardless of the prognosis. The role of the microenvironment is increasingly reported to be a key regulator for blast survival. In this context, we demonstrate that contact with mesenchymal stromal cells promotes a better survival of blasts in culture in the presence of anthracycline through the activation of ABC transporters. Stroma-dependent ABC transporter activation leads to the induction of a Side Population (SP) phenotype in a subpopulation of primary leukemia blasts through alpha (α)4 engagement. The stroma-promoting effect is reversible and is observed with stromal cells isolated from either healthy donors or leukemia patients. Blasts expressing an SP phenotype are mostly quiescent and are chemoresistant in vitro and in vivo in patient-derived xenograft mouse models. At the transcriptomic level, blasts from the SP are specifically enriched in the drug metabolism program. This detoxification signature engaged in contact with mesenchymal stromal cells represents promising ways to target stroma-induced chemoresistance of AML cells.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Células Estromais , Microambiente Tumoral
3.
JCI Insight ; 2(21)2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093266

RESUMO

Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury-induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad.


Assuntos
Macrófagos/metabolismo , Oncostatina M/metabolismo , Ossificação Heterotópica/imunologia , Ossificação Heterotópica/metabolismo , Animais , Antígenos CD34 , Lesões Encefálicas , Diferenciação Celular , Proliferação de Células , Células Endoteliais , Feminino , Hematopoese , Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidade beta de Receptor de Oncostatina M , Ossificação Heterotópica/patologia , Osteogênese , Medula Espinal , Transcriptoma
4.
Nat Commun ; 4: 1674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23575678

RESUMO

Skeletal muscle regeneration after injury follows a remarkable sequence of synchronized events. However, the mechanisms regulating the typical organization of the regenerating muscle at different stages remain largely unknown. Here we show that muscle regeneration in mice lacking either CD9 or CD81 is abnormal and characterized by the formation of discrete giant dystrophic myofibres, which form more quickly in the absence of both tetraspanins. We also show that, in myoblasts, these two tetraspanins associate with the immunoglobulin domain molecule CD9P-1 (EWI-F/FPRP), and that grafting of CD9P-1-depleted myoblasts in regenerating muscles also leads to abnormal regeneration. In vitro myotubes lacking CD9P-1 or both CD9 and CD81 fuse with a higher frequency than normal myotubes. Our study unveils a mechanism preventing inappropriate fusion of myotubes that has an important role in the restitution of normal muscle architecture during muscle regeneration.


Assuntos
Fusão Celular , Músculo Esquelético/fisiologia , Regeneração , Tetraspanina 28/fisiologia , Tetraspanina 29/fisiologia , Animais , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Regulação para Cima
5.
J Proteomics ; 73(1): 93-102, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19703604

RESUMO

Tetraspanins are integral membrane proteins involved in a variety of physiological and pathological processes. They associate with each other in multimolecular complexes containing numerous membrane proteins. As a first step towards the study of the supramolecular organization of tetraspanin complexes, we have implemented a proteomic approach based on in situ protein cross-linking on living cells followed by affinity purification of tetraspanin complexes. This allowed observing the presence of high molecular weight protein complexes that were characterized as containing CD9P-1/CD315 using LC-MS/MS. Western blot analyses and the use of different tags demonstrated the presence of CD9P-1 oligomer in cis-association at cell surface. A significant amount of CD9P-1 oligomer was observed on various cell types. We have shown that CD9P-1 self-associates independently from its association with tetraspanins. However, the expression level of CD9 or CD81 that associate directly and specifically with CD9P-1, positively modulates the cross-linking efficiency of CD9P-1. Thus, tetraspanins can play a role on CD9P-1 oligomerization status.


Assuntos
Membrana Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Antígenos CD/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Humanos , Isomerismo , Células K562 , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica/efeitos dos fármacos , Tetraspanina 28 , Tetraspanina 29 , Tetraspaninas
6.
Am J Pathol ; 171(4): 1269-80, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17717146

RESUMO

Spinal muscular atrophy (SMA) is characterized by degeneration of lower motor neurons and caused by mutations of the SMN1 gene. SMN1 is duplicated in a homologous gene called SMN2, which remains present in patients. SMN has an essential role in RNA metabolism, but its role in SMA pathogenesis remains unknown. Previous studies suggested that in neurons the protein lacking the C terminus (SMN(Delta7)), the major product of the SMN2 gene, had a dominant-negative effect. We generated antibodies specific to SMN(FL) or SMN(Delta7). In transfected cells, the stability of the SMN(Delta7) protein was regulated in a cell-dependent manner. Importantly, whatever the human tissues examined, SMN(Delta7) protein was undetectable because of the instability of the protein, thus excluding a dominant effect of SMN(Delta7) in SMA. A similar decreased level of SMN(FL) was observed in brain and spinal cord samples from human SMA, suggesting that SMN(FL) may have specific targets in motor neurons. Moreover, these data indicate that the vulnerability of motor neurons cannot simply be ascribed to the differential expression or a more dramatic reduction of SMN(FL) in spinal cord when compared with brain tissue. Improving the stability of SMN(Delta7) protein might be envisaged as a new therapeutic strategy in SMA.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neurônios/química , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Proteínas do Complexo SMN , Deleção de Sequência , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor
7.
Biochem J ; 381(Pt 2): 423-8, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15084149

RESUMO

In the present study we investigated the effects of K and other univalent cations on [3H]InsP3 [[3H]Ins(1,4,5)P3] binding to sheep cerebellar microsomes. In equilibrium binding experiments performed over 4 s at pH 7.1 and 20 degrees C, the addition of K to the binding medium decreased the affinity and increased the total number of binding sites for InsP3 in a dose-dependent manner. At low InsP3 concentration (0.5 nM) these effects resulted in a biphasic dose-response curve, with maximal binding at about 75 mM K. In contrast, the dose-response curve calculated for InsP3 at the physiological concentration of 5 mM, was linear up to 200 mM K. Univalent inorganic cations stimulated [3H]InsP3 binding to various extents, with the following descending order of efficiency at 75 mM: Cs approximately Rb approximately K>Na>Li. The effect of K on InsP3R affinity was rapidly reversed upon cation removal. We were therefore also able to demonstrate that K increased Bmax (maximal specific binding) by pre-treating microsomes with K before measuring [3H]InsP3 binding in the absence of that cation. The increase in Bmax was reversible, but this reversal occurred less rapidly than the change in affinity. These results are consistent with a process by which K reversibly converted very low-affinity sites into sites with higher affinity, making them detectable in competitive binding experiments. They suggest that interconversion between these two affinity states constitutes the basis of a K-controlled regulatory mechanism for cerebellar InsP3R.


Assuntos
Cátions/metabolismo , Cerebelo/química , Inositol 1,4,5-Trifosfato/metabolismo , Animais , Cinética , Microssomos/metabolismo , Potássio/fisiologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...