Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484127

RESUMO

The growth of plants, algae and cyanobacteria relies on the catalytic activity of the oxygen-evolving photosystem two (PSII) complex which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for photosystem I in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.

2.
New Phytol ; 241(3): 1236-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986097

RESUMO

Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.


Assuntos
Cianobactérias , Tilacoides , Tilacoides/metabolismo , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Tetrapirróis/metabolismo , Cianobactérias/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1865(1): 149017, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827327

RESUMO

Membrane-bound FtsH proteases are universally present in prokaryotes and in mitochondria and chloroplasts of eukaryotic cells. These metalloproteases are often critical for viability and play both protease and chaperone roles to maintain cellular homeostasis. In contrast to most bacteria bearing a single ftsH gene, cyanobacteria typically possess four FtsH proteases (FtsH1-4) forming heteromeric (FtsH1/3 and FtsH2/3) and homomeric (FtsH4) complexes. The functions and substrate repertoire of each complex are however poorly understood. To identify substrates of the FtsH4 protease complex we established a trapping assay in the cyanobacterium Synechocystis PCC 6803 utilizing a proteolytically inactivated trapFtsH4-His. Around 40 proteins were specifically enriched in trapFtsH4 pulldown when compared with the active FtsH4. As the list of putative FtsH4 substrates contained Ycf4 and Ycf37 assembly factors of Photosystem I (PSI), its core PsaB subunit and the IsiA chlorophyll-binding protein that associates with PSI during iron stress, we focused on these PSI-related proteins. Therefore, we analysed their degradation by FtsH4 in vivo in Synechocystis mutants and in vitro using purified substrates. The data confirmed that FtsH4 degrades Ycf4, Ycf37, IsiA, and also the individual PsaA and PsaB subunits in the unassembled state but not when assembled within the PSI complexes. A possible role of FtsH4 in the PSI life-cycle is discussed.


Assuntos
Peptídeo Hidrolases , Synechocystis , Peptídeo Hidrolases/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
4.
Cell Rep ; 42(11): 113265, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37864789

RESUMO

In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.


Assuntos
Synechocystis , Synechocystis/metabolismo , Clorofila/metabolismo , Arginina/metabolismo , Ornitina , Nitrogênio
5.
Proc Natl Acad Sci U S A ; 120(40): e2219230120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751550

RESUMO

Cyanobacteria are infamous producers of toxins. While the toxic potential of planktonic cyanobacterial blooms is well documented, the ecosystem level effects of toxigenic benthic and epiphytic cyanobacteria are an understudied threat. The freshwater epiphytic cyanobacterium Aetokthonos hydrillicola has recently been shown to produce the "eagle killer" neurotoxin aetokthonotoxin (AETX) causing the fatal neurological disease vacuolar myelinopathy. The disease affects a wide array of wildlife in the southeastern United States, most notably waterfowl and birds of prey, including the bald eagle. In an assay for cytotoxicity, we found the crude extract of the cyanobacterium to be much more potent than pure AETX, prompting further investigation. Here, we describe the isolation and structure elucidation of the aetokthonostatins (AESTs), linear peptides belonging to the dolastatin compound family, featuring a unique modification of the C-terminal phenylalanine-derived moiety. Using immunofluorescence microscopy and molecular modeling, we confirmed that AEST potently impacts microtubule dynamics and can bind to tubulin in a similar matter as dolastatin 10. We also show that AEST inhibits reproduction of the nematode Caenorhabditis elegans. Bioinformatic analysis revealed the AEST biosynthetic gene cluster encoding a nonribosomal peptide synthetase/polyketide synthase accompanied by a unique tailoring machinery. The biosynthetic activity of a specific N-terminal methyltransferase was confirmed by in vitro biochemical studies, establishing a mechanistic link between the gene cluster and its product.


Assuntos
Cianobactérias , Águias , Animais , Ecossistema , Cianobactérias/genética , Caenorhabditis elegans , Água Doce
6.
Nat Commun ; 14(1): 4681, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542031

RESUMO

Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Microscopia Crioeletrônica , Cianobactérias/metabolismo
8.
New Phytol ; 239(3): 1083-1097, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282607

RESUMO

An increasing number of small proteins has been identified in the genomes of well-annotated organisms, including the model cyanobacterium Synechocystis sp. PCC 6803. We describe a newly assigned protein comprising 37 amino acids that is encoded upstream of the superoxide dismutase SodB encoding gene. To clarify the role of SliP4, we analyzed a Synechocystis sliP4 mutant and a strain containing a fully active, Flag-tagged variant of SliP4 (SliP4.f). The initial hypothesis that this small protein might be functionally related to SodB could not be supported. Instead, we provide evidence that it fulfills important functions related to the organization of photosynthetic complexes. Therefore, we named it a small light-induced protein of 4 kDa, SliP4. This protein is strongly induced under high-light conditions. The lack of SliP4 causes a light-sensitive phenotype due to impaired cyclic electron flow and state transitions. Interestingly, SliP4.f was co-isolated with NDH1 complex and both photosystems. The interaction between SliP4.f and all three types of complexes was further confirmed by additional pulldowns and 2D-electrophoreses. We propose that the dimeric SliP4 serves as a molecular glue promoting the aggregation of thylakoid complexes, which contributes to different electron transfer modes and energy dissipation under stress conditions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Transporte de Elétrons , Synechocystis/metabolismo , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Tilacoides/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
9.
Plant Cell Physiol ; 64(6): 660-673, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976618

RESUMO

Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Complexo de Proteína do Fotossistema II/metabolismo , Peptídeo Hidrolases , Synechocystis/metabolismo , Tilacoides/metabolismo , Fotossíntese/fisiologia , Endopeptidases/metabolismo
10.
Front Plant Sci ; 14: 1131326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959950

RESUMO

Increasing crop productivity under optimal conditions and mitigating yield losses under stressful conditions is a major challenge in contemporary agriculture. We have recently identified an effective anti-senescence compound (MTU, [1-(2-methoxyethyl)-3-(1,2,3-thiadiazol-5yl)urea]) in in vitro studies. Here, we show that MTU delayed both age- and stress-induced senescence of wheat plants (Triticum aestivum L.) by enhancing the abundance of PSI supercomplex with LHCa antennae (PSI-LHCa) and promoting the cyclic electron flow (CEF) around PSI. We suppose that this rarely-observed phenomenon blocks the disintegration of photosynthetic apparatus and maintains its activity as was reflected by the faster growth rate of wheat in optimal conditions and under drought and heat stress. Our multiyear field trial analysis further shows that the treatment with 0.4 g ha-1 of MTU enhanced average grain yields of field-grown wheat and barley (Hordeum vulgare L.) by 5-8%. Interestingly, the analysis of gene expression and hormone profiling confirms that MTU acts without the involvement of cytokinins or other phytohormones. Moreover, MTU appears to be the only chemical reported to date to affect PSI stability and activity. Our results indicate a central role of PSI and CEF in the onset of senescence with implications in yield management at least for cereal species.

12.
Nat Commun ; 13(1): 7075, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400774

RESUMO

Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.


Assuntos
Lipoproteínas HDL , Trypanosoma brucei gambiense , Humanos , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/metabolismo , Lipoproteínas HDL/metabolismo , Evolução Biológica , Heme/metabolismo , Diferenciação Celular/genética
13.
Microorganisms ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456753

RESUMO

A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6-100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA-DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).

15.
Sci Adv ; 8(7): eabk3139, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171663

RESUMO

Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.

16.
Photosynth Res ; 152(3): 317-332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218444

RESUMO

High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and ß-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a 'generalist' that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of 'specialists' (HliA, B or D) dictate interactions with proteins other than Hlips.


Assuntos
Complexos de Proteínas Captadores de Luz , Synechocystis , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
17.
Plant Physiol ; 189(2): 790-804, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134246

RESUMO

Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Clorofila/metabolismo , Feofitinas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo
18.
Photosynth Res ; 152(3): 363-371, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35015206

RESUMO

The repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.


Assuntos
Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
19.
Plant J ; 109(1): 23-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709696

RESUMO

In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.


Assuntos
Arabidopsis/genética , Evolução Molecular Direcionada , Fotossíntese/genética , Rhodobacter sphaeroides/genética , Synechocystis/genética , Biologia Sintética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Synechocystis/fisiologia , Synechocystis/efeitos da radiação
20.
Nat Commun ; 12(1): 6890, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824207

RESUMO

Life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Plants collect photons by light harvesting complexes (LHC)-abundant membrane proteins containing chlorophyll and xanthophyll molecules. LHC-like proteins are similar in their amino acid sequence to true LHC antennae, however, they rather serve a photoprotective function. Whether the LHC-like proteins bind pigments has remained unclear. Here, we characterize plant LHC-like proteins (LIL3 and ELIP2) produced in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). Both proteins were associated with chlorophyll a (Chl) and zeaxanthin and LIL3 was shown to be capable of quenching Chl fluorescence via direct energy transfer from the Chl Qy state to zeaxanthin S1 state. Interestingly, the ability of the ELIP2 protein to quench can be acquired by modifying its N-terminal sequence. By employing Synechocystis carotenoid mutants and site-directed mutagenesis we demonstrate that, although LIL3 does not need pigments for folding, pigments stabilize the LIL3 dimer.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Transferência de Energia , Mutação , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Synechocystis/genética , Synechocystis/metabolismo , Xantofilas/metabolismo , Zeaxantinas/genética , Zeaxantinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...