RESUMO
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
RESUMO
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content.
Assuntos
Vesículas Extracelulares/genética , Paracoccidioides , Paracoccidioidomicose/microbiologia , RNA/genética , Animais , Células Cultivadas , Paracoccidioides/genética , Paracoccidioides/patogenicidade , VirulênciaRESUMO
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related toprotein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content
Assuntos
Blastocisto/metabolismo , Lipídeos/análise , Espectrometria de Massas/métodos , Metabolômica/métodos , Oócitos/metabolismo , Animais , Bovinos , Bases de Dados Factuais , Feminino , Fertilização in vitro , Metabolismo dos Lipídeos , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fluxo de TrabalhoRESUMO
Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.
RESUMO
Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.
RESUMO
Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion.
Assuntos
Interações Hospedeiro-Parasita/fisiologia , Microcorpos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Trypanosoma cruzi/enzimologia , Citoesqueleto de Actina , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/imunologia , Dimerização , Células HeLa , Humanos , Estágios do Ciclo de Vida , Camundongos , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Dinâmica Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Trypanosoma cruzi/fisiologiaRESUMO
RK-682 (1) is a natural product known to selectively inhibit protein tyrosine phosphatases (PTPases) and is used commercially as a positive control for phosphatase inhibition in in vitro assays. Protein phosphatases are involved in several human diseases including diabetes, cancer and inflammation, and are considered important targets for pharmaceutical development. Here we report the synthesis of racemic RK-682 (rac-1) and a focused set of compounds, including racemic analogues of 1, dihydropyranones and C-acylated Meldrum's acid derivatives, the later obtained in one synthetic step from commercially available starting material. We further characterized the behavior of some representative compounds in aqueous solution and evaluated their in vitro PTPase binding and inhibition. Our data reveal that rac-1 and some derivatives are able to form large aggregates in solution, in which the aggregation capacity is dependent on the acyl side chain size. However, compound aggregation per se is not able to promote PTPase inhibition. Our data disclose a novel family of PTPase inhibitors (C-acylated Meldrum's acid derivatives) and that rac-1 and derivatives with an exposed latent negatively charged substructure (e.g.: the tetronic acid core of 1) can bind to the PTPase binding site, as well promiscuously to protein surfaces. The combined capacity of compounds to bind to proteins together with their intrinsic capacity to aggregate in solution seems essential to promote enzyme aggregation and thus, its inhibition. We also observed that divalent cations, such as magnesium frequently used in enzyme buffer solutions, can deplete the inhibitory activity of rac-1, thus influencing the enzyme inhibition experiment. Overall, these data help to characterize the mechanism of PTPase inhibition by rac-1 and derivatives, revealing that enzyme inhibition is not solely dependent on compound binding to the PTPase catalytic site as generally accepted in the literature. In addition, our results point to promiscuous mechanisms that influence significantly the in vitro evaluation of enzyme inhibition by rac-1. Therefore, we recommend caution when using natural or synthetic RK-682 (1) as an internal control for evaluating PTPase inhibition and selectivity, since many events can modulate the apparent enzyme inhibition.
Assuntos
Inibidores Enzimáticos/síntese química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/farmacologia , EstereoisomerismoRESUMO
Cryptococcus neoformans is an opportunistic human pathogen that causes life-threatening meningitis. In this fungus, the cell wall is exceptionally not the outermost structure due to the presence of a surrounding polysaccharide capsule, which has been highly studied. Considering that there is little information about C. neoformans cell wall composition, we aimed at describing proteins and lipids extractable from this organelle, using as model the acapsular mutant C. neoformans cap 67. Purified cell wall preparations were extracted with either chloroform/methanol or hot sodium dodecyl sulfate. Total lipids fractionated in silica gel 60 were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS), while trypsin digested proteins were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We detected 25 phospholipid species among phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidic acid. Two glycolipid species were identified as monohexosyl ceramides. We identified 192 noncovalently linked proteins belonging to different metabolic processes. Most proteins were classified as secretory, mainly via nonclassical mechanisms, suggesting a role for extracellular vesicles (EV) in transwall transportation. In concert with that, orthologs from 86% of these proteins have previously been reported both in fungal cell wall and/or in EV. The possible role of the presently described structures in fungal-host relationship is discussed.
Assuntos
Parede Celular/química , Cryptococcus neoformans/química , Lipídeos/química , Proteínas/química , Cryptococcus neoformans/genética , Humanos , Mutação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans-cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow-derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin-layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)-12, transforming growth factor-beta (TGF-ß) and IL-10. Similarly, EV-treated DC produced IL-12p40, IL-10 and tumour necrosis factor-alpha. In addition, EV treatment induced the up-regulation of CD86 and major histocompatibility complex class-II (MHC-II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.
Assuntos
Candida albicans/química , Candida albicans/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Vesículas Secretórias/química , Vesículas Secretórias/imunologia , Animais , Antígenos de Fungos/análise , Antígenos de Fungos/química , Antígenos de Fungos/imunologia , Candida albicans/citologia , Células Cultivadas , Cromatografia em Camada Fina , Células Dendríticas/metabolismo , Endocitose , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Interleucina-12/metabolismo , Lipídeos/análise , Macrófagos/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Peso Molecular , Óxido Nítrico/metabolismo , Proteoma/análise , Vesículas Secretórias/ultraestrutura , Fator de Crescimento Transformador beta/metabolismoRESUMO
Linear consensus motifs are short contiguous sequences of residues within a protein that can form recognition modules for protein interaction or catalytic modification. Protein kinase specificity and the matching of kinases to substrates have been mostly defined by phosphorylation sites that occur in linear consensus motifs. However, phosphorylation can also occur within sequences that do not match known linear consensus motifs recognized by kinases and within flexible loops. We report the identification of Thr(253) in α-tubulin as a site that is phosphorylated by protein kinase C ßI (PKCßI). Thr(253) is not part of a linear PKC consensus motif. Instead, Thr(253) occurs within a region on the surface of α-tubulin that resembles a PKC phosphorylation site consensus motif formed by basic residues in different parts of the protein, which come together in the folded protein to form the recognition motif for PKCßI. Mutations of these basic residues decreased substrate phosphorylation, confirming the presence of this "structurally formed" consensus motif and its importance for the protein kinase-substrate interaction. Analysis of previously reported protein kinase A (PKA) and PKC substrates identified sites within structurally formed consensus motifs in many substrates of these two kinase families. Thus, the concept of consensus phosphorylation site motif needs to be expanded to include sites within these structurally formed consensus motifs.
Assuntos
Fosfotransferases/química , Motivos de Aminoácidos , Animais , Catálise , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas de Fluorescência Verde/química , Células HEK293 , Células HeLa , Humanos , Lisina/química , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Dobramento de Proteína , Proteína Quinase C/química , Treonina/química , Tubulina (Proteína)/químicaRESUMO
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Ligação a Fosfato , Proteoma , Proteômica , Regulon/fisiologia , Xanthomonas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Fosfatos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Especificidade da Espécie , Xanthomonas/genética , Xanthomonas/metabolismoRESUMO
Gp82 is a surface glycoprotein expressed in Trypanosoma cruzi metacyclic trypomastigotes, the parasite forms from the insect vector that initiate infection in the mammalian host. Studies with metacyclic forms generated in vitro, as counterparts of insect-borne parasites, have shown that gp82 plays an essential role in host cell invasion and in the establishment of infection by the oral route. Among the gp82 properties relevant for infection are the gastric mucin-binding capacity and the ability to induce the target cell signaling cascades that result in actin cytoskeleton disruption and lysosome exocytosis, events that facilitate parasite internalization. The gp82 sequences from genetically divergent T. cruzi strains are highly conserved, displaying >90 % identity. Both the host cell-binding sites, as well as the gastric mucin-binding sequence of gp82, are localized in the C-terminal domain of the molecule. In the gp82 structure model, the main cell-binding site consists of an α-helix, which connects the N-terminal ß-propeller domain to the C-terminal ß-sandwich domain, where the second cell binding site is nested. The two cell binding sites are fully exposed on gp82 surface. Downstream and close to the α-helix is the gp82 gastric mucin-binding site, which is partially exposed. All available data support the notion that gp82 is structurally suited for metacyclic trypomastigote invasion of host cells and for initiating infection by the oral route.
Assuntos
Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Sequência de Aminoácidos , Ciclização , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos , Glicoproteínas Variantes de Superfície de Trypanosoma/químicaRESUMO
Paracoccidioides brasiliensis and Paracoccidioides lutzii are thermodimorphic species that cause paracoccidioidomycosis. The cell wall is the outermost fungal organelle to form an interface with the host. A number of host effector compounds, including immunologically active molecules, circulate in the plasma. In the present work, we extracted cell-wall-associated proteins from the yeast pathogenic phase of P. brasiliensis, isolate Pb3, grown in the presence of human plasma and analyzed bound plasma proteins by liquid chromatography-tandem mass spectrometry. Transport, complement activation/regulation, and coagulation pathway were the most abundant functional groups identified. Proteins related to iron/copper acquisition, immunoglobulins, and protease inhibitors were also detected. Several human plasma proteins described here have not been previously reported as interacting with fungal components, specifically, clusterin, hemopexin, transthyretin, ceruloplasmin, alpha-1-antitrypsin, apolipoprotein A-I, and apolipoprotein B-100. Additionally, we observed increased phagocytosis by J774.16 macrophages of Pb3 grown in plasma, suggesting that plasma proteins interacting with P. brasiliensis cell wall might be interfering in the fungal relationship with the host.
Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Paracoccidioides/metabolismo , Paracoccidioidomicose/metabolismo , Paracoccidioidomicose/microbiologia , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/microbiologia , Parede Celular/química , Parede Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Paracoccidioides/química , Paracoccidioides/genética , Paracoccidioides/patogenicidade , Paracoccidioidomicose/genética , Ligação Proteica , VirulênciaRESUMO
Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an α-helix, which connects the N-terminal ß-propeller domain to the C-terminal ß-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal ß-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the α-helix. Located downstream and close to the α-helix was the gp82 gastric mucin binding site, which plays a central role in oral T. cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route, whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues.
Assuntos
Mucinas Gástricas/metabolismo , Doenças da Boca/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Tripanossomíase/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Protozoários/química , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/patogenicidade , Glicoproteínas Variantes de Superfície de Trypanosoma/químicaRESUMO
Papaya meleira virus (PMeV) is so far the only described laticifer-infecting virus, the causal agent of papaya (Carica papaya L.) sticky disease. The effects of PMeV on the laticifers' regulatory network were addressed here through the proteomic analysis of papaya latex. Using both 1-DE- and 1D-LC-ESI-MS/MS, 160 unique papaya latex proteins were identified, representing 122 new proteins in the latex of this plant. Quantitative analysis by normalized spectral counting revealed 10 down-regulated proteins in the latex of diseased plants, 9 cysteine proteases (chymopapain) and 1 latex serine proteinase inhibitor. A repression of papaya latex proteolytic activity during PMeV infection was hypothesized. This was further confirmed by enzymatic assays that showed a reduction of cysteine-protease-associated proteolytic activity in the diseased papaya latex. These findings are discussed in the context of plant responses against pathogens and may greatly contribute to understand the roles of laticifers in plant stress responses.
Assuntos
Carica/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas , Proteômica , Carica/virologiaRESUMO
The identification of subpharyngeal cardiac precursors has had a strong influence on the way we think about early cardiac development. From this discovery was born the concept of multiple heart fields. Early support for the concept came from gene expression, genetic retrospective fate mapping, and gene targeting studies, which collectively suggested the existence of a second heart field (SHF) on the basis of specific Islet-1 (Isl-1) expression, presence of two cardiac ancestral lineages, and compatible cardiac knockout phenotypes, respectively. A decade after the original studies, support for the SHF concept is dwindling. This is because in all bilaterian models studied, Isl expression in heart progenitors is not SHF-specific, because lineage data are best explained by alternative models including an older, truly ancestral, lineage of cardiac pioneers with unrestricted contribution to all cardiac segments and, finally, because the inflow-to-outflow segmental nature of the early vertebrate peristaltic heart has been reaffirmed with novel, less invasive, methodologies. Altogether, the paradigms derived from the discovery of subpharyngeal cardiac progenitors helped us shift from relatively simple models, which rely predominantly either on patterning, gene expression patterns or lineages, to a much more sophisticated body of knowledge in which all these parameters must be accounted. Thus, it is well possible that due consideration of the key elements contained in the inflow/outflow, pioneer/scaffold, ballooning, and SHF hypotheses may provide us with a unified framework of the early stages of cardiac development. Here, we advance into this direction by suggesting an intuitive model of early heart development based on the concept of an inflow/outflow scaffold erected by cardiac pioneers, one that is required to assemble all the subsequent cell contribution that emigrates from cardiac progenitor areas.
Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Humanos , Modelos Biológicos , Miocárdio/citologiaRESUMO
Microorganisms release effector molecules that modulate the host machinery enabling survival, replication, and dissemination of a pathogen. Here we characterized the extracellular proteome of Paracoccidioides brasiliensis at its pathogenic yeast phase. Cell-free culture supernatants from the Pb18 isolate, cultivated in defined medium, were separated into vesicle and vesicle-free fractions, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry. In vesicle and vesicle-free preparations we identified, respectively, 205 and 260 proteins with two or more peptides, including 120 overlapping identifications. Almost 70% of the sequences were predicted as secretory, mostly using nonconventional secretory pathways, and many have previously been localized to fungal cell walls. A total of 72 proteins were considered as commonly transported by extracellular vesicles, considering that orthologues have been reported in at least two other fungal species. These sequences were mostly related to translation, carbohydrate and protein metabolism, oxidation/reduction, transport, response to stress, and signaling. This unique proteomic analysis of extracellular vesicles and vesicle-free released proteins in a pathogenic fungus provides full comparison with other fungal extracellular vesicle proteomes and broadens the current view on fungal secretomes.
Assuntos
Micropartículas Derivadas de Células/metabolismo , Proteínas Fúngicas/metabolismo , Paracoccidioides/metabolismo , Proteoma/metabolismo , Micropartículas Derivadas de Células/enzimologia , Análise por Conglomerados , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/isolamento & purificação , Histoplasma/metabolismo , Cadeias de Markov , Paracoccidioides/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteoma/isolamento & purificação , Saccharomyces cerevisiae/metabolismoRESUMO
BACKGROUND: Phospholamban (PLN) is a crucial Ca(2+) cycling protein and a primary mediator of the ß-adrenergic effects resulting in enhanced cardiac output. Mutations in the gene encoding PLN have been associated with idiopathic dilated cardiomyopathy; however, no systematic search for PLN mutations in heart failure has been conducted. METHODS: We screened a cohort of 1,014 Brazilian patients with heart failure for mutations in the PLN gene. Molecular modeling studies of the mutations found were developed. Different disease etiologies were present in our sample: idiopathic, ischemic, Chagas, valvular, hypertensive, and others. RESULTS: We identified 4 unrelated patients with PLN mutations (prevalence of 0.4%), 3 of them in the same amino acid residue (R9). Two patients presented a G-T missense mutation at the G26 nucleotide, which encodes an Arg-Leu substitution at codon 9 (R9L). One patient presented a G-A missense mutation at the same nucleotide, which encodes an Arg-His substitution at codon 9 (R9H). The fourth affected patient presented a T-G nonsense mutation at the nucleotide 116, substituting a termination codon for Leu-39 (L39stop). Molecular modeling studies suggested that R9L and R9H mutations might affect the region involved in protein kinase A docking and probably affect the mechanism modulating the release of phosphorylated PLN from the substrate binding site of protein kinase A. CONCLUSIONS: Mutations in the PLN gene are a rare cause of heart failure, present almost exclusively in patients with dilated cardiomyopathy etiology. The Arg9 and Leu39 residues are the leading location of mutations described at this locus to date. Despite the few mutated residues described to date, the clinical spectrum of presentation appears to vary considerably.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Insuficiência Cardíaca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto JovemRESUMO
SUMOylation is a relevant protein post-translational modification in eukaryotes. The C terminus of proteolytically activated small ubiquitin-like modifier (SUMO) is covalently linked to a lysine residue of the target protein by an isopeptide bond, through a mechanism that includes an E1-activating enzyme, an E2-conjugating enzyme, and transfer to the target, sometimes with the assistance of a ligase. The modification is reversed by a protease, also responsible for SUMO maturation. A number of proteins have been identified as SUMO targets, participating in the regulation of cell cycle progression, transcription, translation, ubiquitination, and DNA repair. In this study, we report that orthologous genes corresponding to the SUMOylation pathway are present in the etiological agent of Chagas disease, Trypanosoma cruzi. Furthermore, the SUMOylation system is functionally active in this protozoan parasite, having the requirements for SUMO maturation and conjugation. Immunofluorescence analysis showed that T. cruzi SUMO (TcSUMO) is predominantly found in the nucleus. To identify SUMOylation targets and get an insight into their physiological roles we generated transfectant T. cruzi epimastigote lines expressing a double-tagged T. cruzi SUMO, and SUMOylated proteins were enriched by tandem affinity chromatography. By two-dimensional liquid chromatography-mass spectrometry a total of 236 proteins with diverse biological functions were identified as potential T. cruzi SUMO targets. Of these, metacaspase-3 was biochemically validated as a bona fide SUMOylation substrate. Proteomic studies in other organisms have reported that orthologs of putative T. cruzi SUMOylated proteins are similarly modified, indicating conserved functions for protein SUMOylation in this early divergent eukaryote.