Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 230: 113515, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634284

RESUMO

Studying aqueous solutions of complex (bio)polymers is essential from both theoretical and practical perspectives. To understand the principles that govern the properties of these solutions is pivotal for the study of biological processes, considering that the most distinguished components of the cells are polymers (proteins, nucleic acids). These macromolecular aqueous systems, known as colloids, has raise the interest of scientists in recent years. It is known that several physicochemical properties deviate from ideal behaviour in this kind of solutions and that the physical state of water is different compared to its pure state. Particularly, the surface tension of such mixtures often shows a peculiar profile at semi-dilute and concentrated conditions. Here, we joined the colloidal concept of water polarization (proposed in the Association-Induction Hypothesis) with Damodaran's formalism for surface tension to theoretically derive a compelling mathematical model that explains the behaviour of polymer solutions. We measured the surface tension and osmolarity of different polyethylene oxide solutions and we used the ACDAN fluorescence probe to assess the water dipolar relaxation (polarization) in these mixtures. As a proof of concept, we also studied the influence of these polymer solutions on lipid interfaces. Our isotherm model explains the experimental observations with a unifying view that correlates with other measured properties, such as osmolarity and water dipolar relaxation. This provides a link between interfacial and bulk physicochemical properties of polymer solutions, also giving a new framework for studying the interaction of colloidal systems with lipid membranes interfaces.


Assuntos
Polímeros , Água , Tensão Superficial , Fluorescência , Lipídeos
2.
Biochim Biophys Acta Biomembr ; 1865(5): 184157, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028700

RESUMO

HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.


Assuntos
HIV-1 , Fosfatidilinositol 4,5-Difosfato , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , HIV-1/metabolismo , Lipídeos/química , Peptídeos/metabolismo , RNA/metabolismo
3.
Methods Appl Fluoresc ; 10(2)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35139496

RESUMO

The use of phasors to analyze fluorescence data was first introduced for time-resolved studies for a simpler mathematical analysis of the fluorescence-decay curves. Recently, this approach was extended to steady-state experiments with the introduction of the spectral phasors (SP), derived from the Fourier transform of the fluorescence emission spectrum. In this work, we revise key mathematical aspects that lead to an interpretation of SP as the characteristic function of a probability distribution. This formalism allows us to introduce a new tool, called multi-dimensional spectral phasor (MdSP) that seize, not only the information from the emission spectrum, but from the full excitation-emission matrix (EEM). In addition, we developed a homemade open-source Java software to facilitate the MdSP data processing. Due to this mathematical conceptualization, we settled a mechanism for the use of MdSP as a tool to tackle spectral signal unmixing problems in a more accurate way than SP. As a proof of principle, with the use of MdSP we approach two important biophysical questions: protein conformational changes and protein-ligand interactions. Specifically, we experimentally measure the EEM changes upon denaturation of human serum albumin (HSA) or during its association with the fluorescence dye 1,8-anilinonaphtalene sulphate (ANS) detected via tryptophan-ANS Förster Resonance Energy Transfer (FRET). In this sense, MdSP allows us to obtain information of the system in a simpler and finer way than the traditional SP. Specifically, understanding a protein's EEM as a molecular fingerprint opens new doors for the use of MdSP as a tool to analyze and comprehend protein conformational changes and interactions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Transferência Ressonante de Energia de Fluorescência/métodos , Análise de Fourier , Humanos , Albumina Sérica Humana , Espectrometria de Fluorescência/métodos
4.
Toxicon ; 118: 64-81, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27080349

RESUMO

The sea anemone venom contains pore-forming proteins (PFP) named actinoporins, due to their purification from organisms belonging to Actiniaria order and its ability to form pores in sphingomyelin-containing membranes. Actinoporins are generally basic, monomeric and single-domain small proteins (∼20 kDa) that are classified as α-type PFP since the pore formation in membranes occur through α-helical elements. Different actinoporin isoforms have been isolated from most of the anemones species, as was analyzed in the first part of this review. Several actinoporin full-length genes have been identified from genomic-DNA libraries or messenger RNA. Since the actinoporins lack carbohydrates and disulfide bridges, their expression in bacterial systems is suitable. The actinoporins heterologous expression in Escherichia coli simplifies their production, replaces the natural source reducing the ecological damage in anemone populations, and allows the production of site-specific mutants for the study of the structure-function relationship. In this second part of the review, the strategies for heterologous production of actinoporins in Escherichia coli are analyzed, as well as the different approaches used for their purification. The activity of the recombinant proteins with respect to the wild-type is also reviewed.


Assuntos
Venenos de Cnidários/metabolismo , Família Multigênica , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Recombinantes/biossíntese , Anêmonas-do-Mar/metabolismo , Animais , Resinas de Troca de Cátion , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Venenos de Cnidários/química , Venenos de Cnidários/genética , Venenos de Cnidários/toxicidade , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Hemolíticos/isolamento & purificação , Hemolíticos/metabolismo , Hemolíticos/toxicidade , Proteínas Mutantes/biossíntese , Proteínas Mutantes/química , Proteínas Mutantes/toxicidade , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/toxicidade , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA