Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 201: 111598, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33618081

RESUMO

This study was aimed towards the development of a novel microfluidic approach for the preparation of (co)polymeric and hybrid nanoparticles (NPs) composed of (co)polymers/tannic acid (TA) in the microfluidic flow-focusing glass-capillary device. The MiliQ water was used as water phase, whereas the organic phase was composed of poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) homopolymers and (co)polymers with different proportion of comonomers which were prepared via enzymatic polymerization that allows avoiding the usage of potentially toxic catalyst. To prepare hybrid NPs, TA was additionally added to the organic phase. Subsequently, as a result of mixing between these distinct phases in microfluidic channels, the nanoprecipitation in the form of spherical NPs occurs. The size of NPs was tuned over the range of 140-230 nm by controlling phase flow rates and the composition of NPs. Moreover, the release studies of the encapsulated anticancer drug doxorubicin (DOX) demonstrated that the drug release is greatly influenced by the (co)polymers composition, their molecular weight, NPs size, and the presence of TA. The antitumor activities of the (co)polymeric and hybrid NPs toward breast cancer cells (MCF-7) were tested in vitro. Among all tested formulation, the NPs composed of PCL/TA most efficiently inhibit the cell proliferation of MCF-7 cells, most importantly, their efficiency was higher than free DOX. The proposed strategy may provide an efficient alternative for the construction of nanocarriers with great potential in anticancer therapy.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina/farmacologia , Humanos , Microfluídica , Poliésteres , Polímeros , Taninos
2.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731371

RESUMO

Cyclodextrins (CD) are a group of cyclic oligosaccharides with a cavity/specific structure that enables to form inclusion complexes (IC) with a variety of molecules through non-covalent host-guest interactions. By an elegant combination of CD with biocompatible, synthetic and natural polymers, different types of universal drug delivery systems with dynamic/reversible properties have been generated. This review presents the design of nano- and micro-carriers, hydrogels, and fibres based on the polymer/CD supramolecular systems highlighting their possible biomedical applications. Application of the most prominent hydrophobic aliphatic polyesters that exhibit biodegradability, represented by polylactide and polycaprolactone, is described first. Subsequently, particular attention is focused on materials obtained from hydrophilic polyethylene oxide. Moreover, examples are also presented for grafting of CD on polysaccharides. In summary, we show the application of host-guest interactions in multi-component functional biomaterials for controlled drug delivery.


Assuntos
Ciclodextrinas , Sistemas de Liberação de Medicamentos , Hidrogéis , Poliésteres , Ciclodextrinas/química , Ciclodextrinas/uso terapêutico , Hidrogéis/química , Hidrogéis/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico
3.
Polymers (Basel) ; 10(1)2018 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-30966105

RESUMO

The effect of configuration of an asymmetric bulky initiator 2,2'-[1,1'-binaphtyl-2,2'-diyl- bis-(nitrylomethilidyne)]diphenoxy aluminum isopropoxide (Ini) on structure of copolymer of asymmetric monomer l,l-lactide (Lac) with symmetric comonomer trimethylene carbonate (Tmc) was studied using polarimetry, dilatometry, Size Exclusion Chromatography (SEC), and Carbon Nuclear Magnetic Resonance (13C NMR). When the S-enantiomer of Ini was used the distribution in copolymer chains at the beginning of polymerization is statistical, with alternacy tendency, changing next through a gradient region to homoblocks of Tmc. However, when R-Ini was used, the product formed was a gradient oligoblock one, with Tmc blocks prevailing at the beginning, changing to Lac blocks dominating at the end part of chains. Initiation of copolymerization with the mixture of both initiator enantiomers (S:R = 6:94) gave a multiblock copolymer of similar features but shorter blocks. Analysis of copolymerization progress required complex analysis of dilatometric data, assuming different molar volume contraction coefficients for units located in different triads. Comonomer reactivity ratios of studied copolymerizations were determined.

4.
Polymers (Basel) ; 10(6)2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966706

RESUMO

This article demonstrates that ionizing radiation induces simultaneous crosslinking and scission in poly(trimethylene carbonate-co-d-lactide) diblock and random copolymers. Copolymer films were electron-beam (EB) irradiated up to 300 kGy under anaerobic conditions and subsequently examined by evaluation of their structure (FT-IR, NMR), molecular weight, intrinsic viscosities, and thermal properties. Radiation chemistry of the copolymers is strongly influenced by the content of ester linkages of the lactide component. At low lactide content, crosslinking reaction is the dominant one; however, as the lactide ratio increases, the ester linkages scission becomes more competent and exceeds the crosslinking. Electron paramagnetic resonance (EPR) measurements indicate that higher content of amorphous carbonate units in copolymers leads to a reduction in free radical yield and faster radical decay as compared to lactide-rich compositions. The domination of scission of ester bonds was confirmed by identifying the radiolytically produced alkoxyl and acetyl radicals, the latter being more stable due to its conjugated structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...