Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38787232

RESUMO

Surveillance of avian influenza virus (AIV) was conducted in the 2021-2022 winter season at a wintering site of migratory Anatidae in Japan. An H5N8 subtype high pathogenicity AIV (HPAIV) with a unique gene constellation and four low pathogenicity AIVs (LPAIVs) were isolated from environmental samples. The genetic origin of the HPAIV (NK1201) was determined with whole-genome sequencing and phylogenetic analyses. Six of NK1201's eight genes were closely related to HA clade 2.3.4.4b H5N8 subtype HPAIVs, belonging to the G2a group, which was responsible for outbreaks in poultry farms in November 2021 in Japan. However, the remaining two genes, PB1 and NP, most closely matched those of the LPAIVs H7N7 and H1N8, which were isolated at the same place in the same 2021-2022 winter. No virus of the NK1201 genotype had been detected prior to the 2021-2022 winter, indicating that it emerged via genetic reassortment among HPAIV and LPAIVs, which were prevalent at the same wintering site. In addition, experimental infection in chickens indicated that NK1201 had slightly different infectivity compared to the reported infectivity of the representative G2a group H5N8 HPAIV, suggesting that the PB1 and NP genes derived from LPAIVs might have affected the pathogenicity of the virus in chickens. Our results directly demonstrate the emergence of a novel genotype of H5N8 HPAIV through gene reassortment at a wintering site. Analyses of AIVs at wintering sites can help to identify the emergence of novel HPAIVs, which pose risks to poultry, livestock, and humans.

2.
Viruses ; 15(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37766272

RESUMO

In the fall of 2022, high pathogenicity avian influenza viruses (HPAIVs) were detected from raptors and geese in Japan, a month earlier than in past years, indicating a shift in detection patterns. In this study, we conducted a phylogenetic analysis on H5N1 HPAIVs detected from six wild birds during the 2022/2023 season to determine their genetic origins. Our findings revealed that these HPAIVs belong to the G2 group within clade 2.3.4.4b, with all isolates classified into three subgroups: G2b, G2d, and G2c. The genetic background of the G2b virus (a peregrine falcon-derived strain) and G2d viruses (two raptors and two geese-derived strains) were the same as those detected in Japan in the 2021/2022 season. Since no HPAI cases were reported in Japan during the summer of 2022, it is probable that migratory birds reintroduced the G2b and G2d viruses. Conversely, the G2c virus (a raptor-derived strain) was first recognized in Japan in the fall of 2022. This strain might share a common ancestor with HPAIVs from Asia and West Siberia observed in the 2021/2022 season. The early migration of waterfowl to Japan in the fall of 2022 could have facilitated the early invasion of HPAIVs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Aves Predatórias , Animais , Gansos , Influenza Aviária/epidemiologia , Japão/epidemiologia , Virulência , Filogenia , Estações do Ano , Animais Selvagens
3.
J Vet Med Sci ; 85(11): 1180-1189, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37766550

RESUMO

In the winter of 2021-2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. H5 subtype hemagglutinin (HA) genes of 32 representative HPAIV isolates were classified into clade 2.3.4.4b lineage and subsequently divided into three groups (G2a, G2b, and G2d). All H5N8 HPAIVs were isolated in early winter and had HA genes belonging to the G2a group. H5N1 HPAIVs belong to the G2b and G2d groups. Although G2b viruses were widespread throughout the season, G2d viruses endemically circulated in Northeast Japan after January 2022. Deep sequence analysis showed that the four HPAIVs isolated at the beginning of winter had both N8 and N1 subtypes of neuraminidase genes. Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Aves Domésticas , Vírus da Influenza A Subtipo H5N8/genética , Japão/epidemiologia , Virulência , Fazendas , Estações do Ano , Aves , Animais Selvagens , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Água , Filogenia
4.
J Vet Med Sci ; 85(9): 942-949, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37495526

RESUMO

In the winter of 2010-2011, Japan experienced a large outbreak of infections caused by clade 2.3.2.1 H5N1 high pathogenicity avian influenza viruses (HPAIVs) in wild birds. Interestingly, many tufted ducks (Aythya fuligula), which are migratory diving ducks, succumbed to the infection, whereas only one infection case was reported in migratory dabbling duck species, the major natural hosts of the influenza A virus, during the outbreak. To assess whether the susceptibility of each duck species to HPAIVs was correlated with the number of cases, tufted duck and dabbling duck species (Eurasian wigeon, Mareca penelope; mallard, Anas platyrhynchos; Northern pintail, Anas acuta) were intranasally inoculated with A/Mandarin duck/Miyazaki/22M807-1/2011 (H5N1), an index clade 2.3.2.1 virus previously used for experimental infection studies in various bird species. All ducks observed for 10 days post-inoculation (dpi) mostly shed the virus via the oral route and survived. The tufted ducks shed a higher titer of the virus than the other dabbling duck species, and one of them showed apparent neurological symptoms after 7 dpi, which were accompanied by eye lesions. No clinical symptoms were observed in the dabbling ducks, although systemic infection and viremia were observed in some of them sacrificed at 3 dpi. These results suggest that the susceptibility of clade 2.3.2.1 HPAIVs might differ by duck species.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Patos , Influenza Aviária/epidemiologia , Virulência
5.
J Vet Med Sci ; 85(8): 849-852, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331816

RESUMO

During the 2020-2021 winter, Eurasian countries experienced large outbreaks caused by the clade 2.3.4.4b H5N8 subtype high pathogenicity avian influenza viruses (HPAIVs) in the wild bird populations. At least seven gene constellations have been found in the causal HPAIVs. When and where the various HPAIVs emerged remains unclear. Here, we successfully cloned H5N8 HPAIVs with multiple gene constellations from a tracheal swab of a dead mallard found at its wintering site in Japan in January 2021. According to their phylogeny, the bird was most likely co-infected with the E2 and E3 genotype clade 2.3.4.4b HPAIVs. The result indicates that feral waterbirds can be infected with multiple HPAIVs, and shed an HPAIV with novel gene constellation in Southern wintering sites.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Vírus da Influenza A Subtipo H5N8/genética , Virulência , Patos , Influenza Aviária/epidemiologia , Aves , Animais Selvagens , Vírus da Influenza A/genética , Filogenia
6.
BMC Vet Res ; 18(1): 127, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366864

RESUMO

BACKGROUND: There were large outbreaks of high pathogenicity avian influenza (HPAI) caused by clade 2.3.4.4e H5N6 viruses in the winter of 2016-2017 in Japan, which caused large numbers of deaths among several endangered bird species including cranes, raptors, and birds in Family Anatidae. In this study, susceptibility of common Anatidae to a clade 2.3.4.4e H5N6 HPAI virus was assessed to evaluate their potential to be a source of infection for other birds. Eurasian wigeons (Mareca penelope), mallards (Anas platyrhynchos), and Northern pintails (Anas acuta) were intranasally inoculated with 106, 104, or 102 50% egg infectious dose (EID50) of clade 2.3.4.4e A/teal/Tottori/1/2016 (H5N6). RESULTS: All birds survived for 10 days without showing any clinical signs of infection. Most ducks inoculated with ≥ 104 EID50 of virus seroconverted within 10 days post-inoculation (dpi). Virus was mainly shed via the oral route for a maximum of 10 days, followed by cloacal route in late phase of infection. Virus remained in the pancreas of some ducks at 10 dpi. Viremia was observed in some ducks euthanized at 3 dpi, and ≤ 106.3 EID50 of virus was recovered from systemic tissues and swab samples including eyeballs and conjunctival swabs. CONCLUSIONS: These results indicate that the subject duck species have a potential to be a source of infection of clade 2.3.4.4e HPAI virus to the environment and other birds sharing their habitats. Captive ducks should be reared under isolated or separated circumstances during the HPAI epidemic season to prevent infection and further viral dissemination.


Assuntos
Patos , Influenza Aviária , Animais , Aves , Eutanásia Animal , Virulência
7.
Avian Pathol ; 51(2): 146-153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34967244

RESUMO

The pathogenicity of the H5 subtype high pathogenicity avian influenza viruses (HPAIVs) in Ardeidae bird species has not been investigated yet, despite the increasing infections reported. Therefore, the present study aimed to examine the susceptibility of the Ardeidae species, which had already been reported to be susceptible to HPAIVs, to a clade 2.3.2.1 H5N1 HPAIV. Juvenile herons (four grey herons, one intermediate egret, two little egrets, and three black-crowned night herons) were intranasally inoculated with 106 50% egg infectious dose of the virus and observed for 10 days. Two of the four grey herons showed lethargy and conjunctivitis; among them, one died at 6 days post-inoculation (dpi). The viruses were transmitted to the other two cohoused naïve grey herons. Some little egrets and black-crowned night herons showing neurological disorders died at 4-5 dpi; these birds mainly shed the virus via the oral route. The viruses predominantly replicated in the brains of birds that died of infection. Seroconversion was observed in most surviving birds, except some black-crowned night herons. These results demonstrate that most Ardeidae species are susceptible to H5 HPAIVs, sometimes with lethal effects. Herons are mostly colonial and often share habitats with Anseriformes, natural hosts of influenza A viruses; therefore, the risks of cluster infection and contribution to viral dissemination should be continuously evaluated. RESEARCH HIGHLIGHTSClade 2.3.2.1 H5N1 HPAIV causes lethal infections in Ardeidae sp.Viruses are transmitted among grey herons.Some herons with HPAIV showed conjunctivitis or neurological symptoms.HPAIV systemically replicated in herons tissues.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves , Virulência
8.
J Vet Med Sci ; 84(1): 121-128, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34853197

RESUMO

Although verogenic Newcastle disease viruses (NDVs) generally cause subclinical infection in waterfowls such as ducks, NDVs with high virulence in waterfowl have been sporadically reported. We previously reported that the NDV d5a20b strain, which is obtained by serial passaging of the velogenic 9a5b strain in domestic ducks, showed increased virulence in ducks (Hidaka et al., 2021). The d5a20b strain had 11 amino acid substitutions in its P/V, M, F, HN, and L proteins as compared to 9a5b. In the present study, we generated a series of recombinant (r) NDVs with these amino acid substitutions to identify the molecular basis of virulence of NDV in ducks, and evaluated their influences on virulence and in vitro viral properties. Each of the single amino acid substitutions in either the F protein I142M or the M protein Q44R contributed to the enhancement of intracerebral and intranasal pathogenicity in domestic ducks. The cell-cell fusion activity of the virus with F I142M was five times higher than that of the parental r9a5b. The virus with M Q44R rapidly replicated in duck embryo fibroblasts. Additionally, the rM+F+HN strain, which has the same amino acid sequences as d5a20b in M, F, and HN proteins, showed the highest level of virulence and replication efficiency among the generated recombinant viruses, nearly comparable to rd5a20b. These results suggest that multiple factors are involved in the high growth ability of NDV in duck cells, leading to increased virulence in vivo.


Assuntos
Patos , Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Mutação , Vírus da Doença de Newcastle/genética , Virulência
9.
J Vet Med Sci ; 83(12): 1891-1898, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34732610

RESUMO

Large highly pathogenic avian influenza (HPAI) outbreaks caused by clade 2.3.4.4e H5N6 viruses occurred in Japan during the 2016-2017 winter. To date, several reports regarding these outbreaks have been published, however a comprehensive study including geographical and time course validations has not been performed. Herein, 58 Japanese HPAI virus (HPAIV) isolates from the 2016-2017 season were added for phylogenetic analyses and the antigenic relationships among the causal viruses were elucidated. The locations where HPAIVs were found in the early phase of the outbreaks were clustered into three regions. Genotypes C1, C5, and C6-8 HPAIVs were found in specific areas. Two strains had phylogenetically distinct hemagglutinin (HA) and non-structural (NS) genes from other previously identified strains, respectively. The estimated latest divergence date between the viral genotypes suggests that genetic reassortment occurred in bird populations before their winter migration to Japan. Antigenic differences in 2016-2017 HPAIVs were not observed, suggesting that antibody pressure in the birds did not contribute to the selection of HPAIV genotypes. In the late phase, the majority of HPAI cases in wild birds occurred south of the lake freezing line. At the end of the outbreak, HPAI re-occurred in East coast region, which may be due to the spring migration route of Anas bird species. These trends were similar to those observed in the 2010-2011 outbreaks, suggesting there is a typical pattern of seeding and dissemination of HPAIV in Japan.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Surtos de Doenças , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Japão/epidemiologia , Filogenia , Estações do Ano
10.
J Vet Med Sci ; 83(12): 1899-1906, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34732612

RESUMO

Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with phosphate-buffered saline (PBS) (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3-5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Patos , Aves Domésticas
11.
Avian Pathol ; : 1-12, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576245

RESUMO

Velogenic Newcastle disease virus (NDV) strains, which show high mortality in chickens, generally do not cause severe disease in waterfowl such as ducks. To elucidate the difference in the pathogenic mechanisms of NDV between chickens and ducks, a chicken-derived velogenic strain (9a5b) was passaged in domestic ducks five times in their air sacs, followed by 20 times in their brains. Eventually, 9a5b acquired higher intracerebral and intranasal pathogenicity in ducks. The intracerebral pathogenicity index (ICPI) value increased from 1.10 to 1.88. All one-week-old ducks intranasally inoculated with the passaged virus (d5a20b) died by 5 days post-inoculation, whereas 70% of the ducks inoculated with parental 9a5b survived for 8 days. The d5a20b strain replicated in broader systemic tissues in ducks compared with the 9a5b strain. The velogenic profile of 9a5b in chickens was maintained after passaging in ducks. The d5a20b suppressed IFN-ß gene expression in duck embryo fibroblasts and replicated more rapidly than 9a5b. A total of 11 amino acid substitutions were found in the P, V, M, F, HN, and L proteins of d5a20b. These results suggest that chicken-derived velogenic NDVs have the potential to become virulent in both chickens and ducks during circulation in domesticated waterfowl populations. RESEARCH HIGHLIGHTSChicken-derived NDV acquired high pathogenicity in ducks with serial passaging.The passaged NDV showed intracerebral and intranasal pathogenicity in ducks.The passaged NDV efficiently replicated in systemic tissues in ducks.Of 11 amino acid substitutions some or all are likely involved in pathogenicity.

12.
Virus Genes ; 56(6): 712-723, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32996077

RESUMO

To date, avian influenza viruses (AIVs) have persisted in domestic poultry in wet markets in East Asian countries. We have performed ongoing virus surveillance in poultry populations in Vietnam since 2011, with the goal of controlling avian influenza. Throughout this study, 110 H3 AIVs were isolated from 2760 swab samples of poultry in markets and duck farms. H3 hemagglutinin (HA) genes of the isolates were phylogenetically classified into eight groups (I-VIII). Genetic diversity was also observed in the other seven gene segments. Groups I-IV also included AIVs from wild waterbirds. The epidemic strains in poultry switched from groups I-III and VI to groups I, IV, V, and VIII around 2013. H3 AIVs in groups I and V were maintained in poultry until at least 2016, which likely accompanied their dissemination from the northern to the southern regions of Vietnam. Groups VI-VIII AIVs were antigenically distinct from the other groups. Some H3 AIV isolates had similar N6 neuraminidase and matrix genes as H5 highly pathogenic avian influenza viruses (HPAIVs). These results reveal that genetically and antigenically different H3 AIVs have been co-circulating in poultry in Vietnam. Poultry is usually reared outside in this country and is at risk of infection with wild waterbird-originating AIVs. In poultry flocks, the intruded H3 AIVs must have experienced antigenic drift/shift and genetic reassortment, which could contribute to the emergence of H5 HPAIVs with novel gene constellations.


Assuntos
Patos/virologia , Vírus da Influenza A , Influenza Aviária/virologia , Animais , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , RNA Viral , Vietnã
13.
Avian Pathol ; 49(5): 515-525, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32619103

RESUMO

Birds of prey, including endangered species, have been infected with H5 highly pathogenic avian influenza viruses (HPAIVs) in several countries. In this present study, we assessed the pathogenicity of the clade 2.3.2.1 H5N1 HPAIV in American kestrels (Falco sparverius) with a view to preventing future outbreaks in raptors. The kestrels were intranasally inoculated with the virus or fed the meat of chicks that had died from viral infection. Kestrels in both groups initially had reduced food intake, showed clinical signs such as depression and neurologic manifestations, and succumbed to the infection within 6 days. The kestrels primarily shed the virus orally from 1 day post-inoculation until death, with an average titre of 104.5-5.7 EID50/ml, which is comparable to the inoculum titre. The viruses replicated in almost all tested tissues; notably, the feather calamuses also contained infectious virions and/or viral genes. Pancreatic lesions were present in several infected birds, as shown in previous cases of HPAIV infection in raptors. These results indicate that kestrels are highly susceptible to infection by clade 2.3.2.1 H5 HPAIVs, which readily occurs through the consumption of infected bird carcasses. Early detection and removal of HPAIV infected carcasses in the field is essential for preventing outbreaks in raptors. RESEARCH HIGHLIGHTS Clade 2.3.2.1 H5 HPAIV caused lethal infection in American kestrels. Kestrels with the HPAIV showed neurologic signs and eye disorders. The HPAIV replicated in systemic tissues of kestrels, and was orally shed. The HPAIV was recovered from feather calamus of kestrels.


Assuntos
Falconiformes/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Animais , Feminino , Masculino , Virulência
14.
Avian Pathol ; 49(3): 261-267, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32013539

RESUMO

Rooks (Corvus frugilegus) are considered migratory crows in Japan. Some rooks share a wintering site in the Izumi plain in Kagoshima Prefecture with hooded cranes (Grus monacha) and white-necked cranes (Grus vipio), which are designated as "endangered" in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Highly pathogenic avian influenza (HPAI), caused by H5 subtype viruses, has recently been reported in these crane species in Japan, in conjunction with a massive decrease in their population. In the present study, the pathogenicity of HPAI virus was assessed in rooks to evaluate the likelihood that they are a source of infections in other bird species. One of four rooks intranasally inoculated with A/mandarin duck/Miyazaki/22M807-1/2011 (H5N1) died at 10 days post-inoculation (d.p.i.). The other three rooks exhibited seroconversion but no clinical signs. All the rooks had shed virus by the oral route at <103 50% egg infectious dose/ml until 7 d.p.i. Virus was also recovered from multiple tissues of the rook that succumbed to the infection. These results suggest that rooks are susceptible to infection with H5 HPAI viruses, leading to prolonged viral shedding. The rooks shed the virus at low titres however, indicating that they are likely to function as transmission vectors in wintering bird flocks. The rooks exhibited clear antibody responses against the H5 HPAI virus, and thus serological surveillance of them in the field should be helpful for assessing viral pervasion into the habitats of crane species.


Assuntos
Corvos , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Animais , Eliminação de Partículas Virais
15.
Transbound Emerg Dis ; 67(2): 686-697, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31605424

RESUMO

In late 2016, two zoos, one in northern Japan and the other in central Japan, experienced highly pathogenic avian influenza (HPAI) outbreaks, in which multiple zoo birds were infected with H5N6 subtype HPAI virus (HPAIV). Here, we report an overview of these HPAI outbreaks. HPAIV infections were confirmed by virus isolation in three black swans (Cygnus atratus) and three snowy owls (Bubo scandiacus) kept in the Omoriyama Zoo hospital. At Higashiyama Zoo and Botanical Gardens, following the death of a black swan at a zoo pond, nine waterfowl, including two black swans, four cackling geese (Branta hutchinsii leucopareia), two mallards (Anas platyrhynchos), and a wigeon (Anas penelope), died after HPAIV infection in isolation facilities. Based on the presence of H5-specific antibodies in their sera, two surviving black swans and a surviving mallard at Higashiyama Zoo appeared to have HPAIV infection, although the virus was not isolated. The detectable levels of antibodies (≥10 HI) were maintained for at least 5-9 months, as determined by haemagglutinin inhibition test. Isolation of two H5N6 subtype HPAIVs from an open-air pond where affected zoo birds were previously housed at Higashiyama Zoo strongly indicates that wild waterfowl associated with aquatic environments brought the virus to the zoo. The phylogenetic relationships of the 18 isolates indicated direct viral transmission among birds within each zoo. In both zoos, containment of suspected birds in isolation facilities might have allowed the virus spread among birds inside the facility. However, maintaining containment measures and strict sanitation procedures could facilitate successful physical containment and clearance of HPAIV in both zoos.


Assuntos
Surtos de Doenças/veterinária , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Animais de Zoológico , Aves , Patos , Hemaglutininas/análise , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Japão/epidemiologia , Filogenia , Estações do Ano
16.
Vet Microbiol ; 237: 108381, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31585646

RESUMO

The H5N8 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during the 2014-2015 winter differed in their pathogenicity in chickens. In the present study, we examined the possibility that a comparatively less pathogenic strain was first brought into the country by migratory birds, and then acquired enhanced pathogenicity by infecting chicken flocks. We showed that the A/tundra swan/Tottori/C6nk/2014 (H5N8) (Tottori P0) strain required 10 days to kill all chickens via the intranasal route. However, Tottori P1-B, a strain recovered from the brain of a chicken infected with parental Tottori P0, showed enhanced pathogenicity; Tottori P1-B replicated significantly in the lung and liver, and killed all infected birds within 6 days, which was comparable to a chicken farm isolate obtained in the same season, A/environment/Miyazaki/11/2014 (H5N8). Tottori P1-B showed more marked proliferation in MDCK and chicken fibroblast cells, especially during the early phase of infection. Sequence analysis revealed a single mutation, M374 V, in nucleoprotein (NP) of the passaged virus, and this substitution was conserved after a further inoculation study. Position 374 in NP is located in the functional domain interacting with polymerase protein, PB2, indicating that viral polymerase activity was involved in the rapid growth of Tottori P1-B in vitro and in vivo. These results suggest that HPAIV, which originally had comparatively low pathogenicity to chickens, can increase its pathogenicity through the infection from migratory birds to domestic chickens.


Assuntos
Galinhas , Patos , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Animais , Linhagem Celular , Embrião de Galinha , Cães , Fibroblastos/virologia , Modelos Moleculares , Conformação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
17.
Sci Rep ; 8(1): 13066, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166556

RESUMO

The role of the influenza virus polymerase complex in host range restriction has been well-studied and several host range determinants, such as the polymerase PB2-E627K and PB2-D701N mutations, have been identified. However, there may be additional, currently unknown, human adaptation polymerase mutations. Here, we used a database search of influenza virus H5N1 clade 1.1, clade 2.3.2.1 and clade 2.3.4 strains isolated from 2008-2012 in Southern China, Vietnam and Cambodia to identify polymerase adaptation mutations that had been selected in infected patients. Several of these mutations acted either alone or together to increase viral polymerase activity in human airway cells to levels similar to the PB2-D701N and PB2-E627K single mutations and to increase progeny virus yields in infected mouse lungs to levels similar to the PB2-D701N single mutation. In particular, specific mutations acted synergistically with the PB2-D701N mutation and showed synergistic effects on viral replication both in human airway cells and mice compared with the corresponding single mutations. Thus, H5N1 viruses in infected patients were able to acquire multiple polymerase mutations that acted cooperatively for human adaptation. Our findings give new insight into the human adaptation of AI viruses and help in avian influenza virus risk assessment.


Assuntos
Adaptação Fisiológica/genética , RNA Polimerases Dirigidas por DNA/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Mutação/genética , Células A549 , Animais , Ásia , Aves/virologia , RNA Polimerases Dirigidas por DNA/química , Células Epiteliais/virologia , Células HEK293 , Humanos , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Pulmão/patologia , Camundongos , Modelos Moleculares , Replicação Viral
18.
Virology ; 512: 8-20, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28892736

RESUMO

To elucidate the evolutionary pathway, we sequenced the entire genomes of 89 H5N6 highly pathogenic avian influenza viruses (HPAIVs) isolated in Japan during winter 2016-2017 and 117 AIV/HPAIVs isolated in Japan and Russia. Phylogenetic analysis showed that at least 5 distinct genotypes of H5N6 HPAIVs affected poultry and wild birds during that period. Japanese H5N6 isolates shared a common genetic ancestor in 6 of 8 genomic segments, and the PA and NS genes demonstrated 4 and 2 genetic origins, respectively. Six gene segments originated from a putative ancestral clade 2.3.4.4 H5N6 virus that was a possible genetic reassortant among Chinese clade 2.3.4.4 H5N6 HPAIVs. In addition, 2 NS clusters and a PA cluster in Japanese H5N6 HPAIVs originated from Chinese HPAIVs, whereas 3 distinct AIV-derived PA clusters were evident. These results suggest that migratory birds were important in the spread and genetic diversification of clade 2.3.4.4 H5 HPAIVs.


Assuntos
Galinhas , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Vírus Reordenados/genética , Animais , Variação Genética , Influenza Aviária/epidemiologia , Japão/epidemiologia , Filogenia , Vírus Reordenados/isolamento & purificação
19.
Emerg Infect Dis ; 23(4): 691-695, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28322695

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) A(H5N6) were concurrently introduced into several distant regions of Japan in November 2016. These viruses were classified into the genetic clade 2.3.4.4c and were genetically closely related to H5N6 HPAIVs recently isolated in South Korea and China. In addition, these HPAIVs showed further antigenic drift.


Assuntos
Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Aves , Influenza Aviária/epidemiologia , Influenza Aviária/mortalidade , Japão , Filogenia
20.
Antiviral Res ; 139: 41-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28012921

RESUMO

High morbidity and mortality associated with human cases of highly pathogenic avian influenza (HPAI) viruses, including H5N1 influenza virus, have been reported. The purpose of the present study was to evaluate the antiviral effects of peramivir against HPAI viruses. In neuraminidase (NA) inhibition and virus replication inhibition assays, peramivir showed strong inhibitory activity against H5N1, H7N1 and H7N7 HPAI viruses with sub-nanomolar activity in enzyme assays. In H5N1 viruses containing the NA H275Y mutation, the antiviral activity of peramivir against the variant was lower than that against the wild-type. Evaluation of the in vivo antiviral activity showed that a single intravenous treatment of peramivir (10 mg/kg) prevented lethality in mice infected with wild-type H5N1 virus and also following infection with H5N1 virus with the H275Y mutation after a 5 day administration of peramivir (30 mg/kg). Furthermore, mice injected with peramivir showed low viral titers and low levels of proinflammatory cytokines in the lungs. These results suggest that peramivir has therapeutic activity against HPAI viruses even if the virus harbors the NA H275Y mutation.


Assuntos
Antivirais/uso terapêutico , Ciclopentanos/uso terapêutico , Guanidinas/uso terapêutico , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/genética , Neuraminidase/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Ácidos Carbocíclicos , Animais , Antivirais/administração & dosagem , Ciclopentanos/administração & dosagem , Citocinas/imunologia , Modelos Animais de Doenças , Guanidinas/administração & dosagem , Humanos , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H7N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N1/enzimologia , Vírus da Influenza A Subtipo H7N7/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N7/enzimologia , Influenza Humana/tratamento farmacológico , Pulmão/imunologia , Pulmão/virologia , Camundongos , Mutação , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...