Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 253(Pt 8): 127668, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884238

RESUMO

Rapid evolution of pest resistance to Bt insecticidal proteins presents a serious threat to the sustainable use of Bt crops. The cotton bollworm has been extensively exposed to Bt cotton worldwide and has evolved resistance in laboratory and field. Previous studies have highlighted the significant roles played by the ABC transporter proteins in Bt resistance. In this study, the ORF of HaABCB1 was cloned and analyzed. The expression of HaABCB1 was detected in all developmental stages and tissues, with the highest expression in third instar larvae stage and hindgut tissue. Compared with susceptible strain, a remarkable decrease of HaABCB1 expression in Cry1Ac resistant strain while no significant change in Cry2Ab resistant strain were found. The HaABCB1 expression reduced after susceptible larvae induced by Cry1Ac, but no obvious expression changes after Cry2Ab exposure. RNAi-mediated down-regulation of HaABCB1 could lead to a significant reduction in larval susceptibility to Cry1Ac, but not to Cry2Ab, in susceptible strain. Genetic linkage analysis confirmed that decreased expression of the HaABCB1 mediates resistance to Cry1Ac, but not Cry2Ab resistance. This knowledge contributes to better understanding of the complex molecular mechanisms underlying Bt resistance and provide theoretical foundation for the development of new strategies for pest resistance management.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Endotoxinas/farmacologia , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Resistência a Inseticidas/genética , Mariposas/genética , Mariposas/metabolismo , Larva/genética , Larva/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/metabolismo , Gossypium/metabolismo
2.
Appl Environ Microbiol ; 89(7): e0062523, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37378519

RESUMO

Midgut receptors play a critical role in the specificity of Cry toxins for individual insect species. Cadherin proteins are essential putative receptors of Cry1A toxins in lepidopteran larvae. Cry2A family members share common binding sites in Helicoverpa armigera, and one of them, Cry2Aa, has been widely reported to interact with midgut cadherin. Here, we studied the binding interaction and functional role of H. armigera cadherin in the mechanism of Cry2Ab toxicity. A region spanning from cadherin repeat 6 (CR6) to the membrane-proximal region (MPR) of cadherin protein was produced as six overlapping peptides to identify the specific binding regions of Cry2Ab. Binding assays showed that Cry2Ab binds nonspecifically to peptides containing CR7 and CR11 regions in a denatured state but binds specifically only to CR7-containing peptides in the native state. The peptides CR6-11 and CR6-8 were transiently expressed in Sf9 cells to assess the functional role of cadherin. Cytotoxicity assays showed that Cry2Ab is not toxic to the cells expressing any of the cadherin peptides. However, ABCA2-expressing cells showed high sensitivity to Cry2Ab toxin. Neither increased nor decreased sensitivity to Cry2Ab was observed when the peptide CR6-11 was coexpressed with the ABCA2 gene in Sf9 cells. Instead, treating ABCA2-expressing cells with a mixture of Cry2Ab and CR6-8 peptides resulted in significantly reduced cell death compared with treatment with Cry2Ab alone. Moreover, silencing of the cadherin gene in H. armigera larvae showed no significant effect on Cry2Ab toxicity, in contrast to the reduced mortality in ABCA2-silenced larvae. IMPORTANCE To improve the efficiency of production of a single toxin in crops and to delay the evolution of insect resistance to the toxin, the second generation of Bt cotton, expressing Cry1Ac and Cry2Ab, was introduced. Understanding the mode action of the Cry proteins in the insect midgut and the mechanisms insects use to overcome these toxins plays a crucial role in developing measures to counter them. Extensive studies have been conducted on the receptors of Cry1A toxins, but relatively little has been done about those of Cry2Ab. By showing the nonfunctional binding of cadherin protein with Cry2Ab, we have furthered the understanding of Cry2Ab receptors.


Assuntos
Toxinas de Bacillus thuringiensis , Helicoverpa armigera , Proteínas de Insetos , Receptores de Superfície Celular , Helicoverpa armigera/crescimento & desenvolvimento , Helicoverpa armigera/metabolismo , Helicoverpa armigera/microbiologia , Animais , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Larva/metabolismo , Técnicas de Silenciamento de Genes , Células Sf9
3.
J Agric Food Chem ; 71(5): 2279-2289, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710440

RESUMO

Reduced insecticide spray in crop fields due to the widespread adoption of Bacillus thuringiensis (Bt) crops has favored the population increases of mirid bugs. Cry51Aa proteins are new types of Bt proteins that belong to aerolysin-like ß pore-forming proteins with insecticidal activity against hemipteran and coleopteran pests. Here, we studied the activity of Bt Cry51Aa1 and Cry51Aa2 against Apolygus lucorum, an emerging pest in cotton, and their mechanism of action. Cry51Aa1 exhibited almost 5-fold higher toxicity than Cry51Aa2 with LC50 of 11.87 and 61.34 µg/mL, respectively. Protoxins could be activated both in vitro, by trypsin and midgut contents, and in vivo, by A. lucorum midgut. Both Cry51Aa protoxins were processed in two steps, producing pre-activated (∼30 kDa) and final activated (∼25-28 kDa) proteins. Cry51Aa proteins bound to a 25 kDa midgut protein, and Cry51Aa2 showed 2 times higher binding affinity than Cry51Aa1. Incubating Cry51Aa proteins with midgut homogenate resulted in toxin oligomers of 150-200 kDa. Our findings provide a theoretical basis for using Cry51Aa proteins to control A. lucorum and a better understanding of their mode of action.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Heterópteros , Inseticidas , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Endotoxinas , Proteínas Hemolisinas , Heterópteros/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia
4.
Pestic Biochem Physiol ; 188: 105269, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464374

RESUMO

Insect resistance to Bacillus thuringiensis (Bt) is a critical limiting factor for applying the Bt crops. Some studies indicated that decreased protoxin activation because of lower enzymatic activities of trypsin and chymotrypsin and increased expression of serpin might involve in Bt resistance. Our previous study identified an endogenous serpin could inhibit the midgut proteases to activate Cry1Ac and reduce the insecticide activity to Helicoverpa armigera. We hypothesis that up-regulated serpin involve in resistance via inhibiting enzymatic activities of trypsin and chymotrypsin to decrease protoxin activation. Herein, we found the serpin-e gene relative expression in midgut was significantly higher in the LF30 resistant strain than that in the susceptible strain during all developmental stages. Importantly, RNAi-mediated silencing of serpin-e gene expression caused 4.46-fold mortality changes in LF30 strain, but the trypsin and chymotrypsin proteases activities were only changed 0.79-fold and 2.22-fold. In addition, although proteases activities were significantly lower in LF30 strain than that in the susceptible strain, the resistance ratios of LF30 to Cry1Ac protoxin and to activated Cry1Ac toxin were no difference. The results indicated serpins caused insect resistance to Cry1Ac protoxins partly through inhibiting the trypsin and chymotrypsin proteases activities, but it also existed other mechanisms in LF30.


Assuntos
Bacillus thuringiensis , Mariposas , Serpinas , Animais , Serpinas/genética , Quimotripsina/genética , Tripsina , Peptídeo Hidrolases , Mariposas/genética
5.
Pestic Biochem Physiol ; 175: 104837, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33993962

RESUMO

Bt protoxins are required to convert to a smaller activated form by insect midgut proteases to exert toxicity against insect pests. Serine protease inhibitors (serpins) play a valuable part in gut protease of insect that hamper digestive proteases activity of insects. Whether the insect serpins induced by Bt protoxin affect the insecticidal activity were rare studied. Here, we identified a serpin-e gene from Helicoverpa armigera, which had potential RCL (Reactive Center Loop) region near the C-terminus like other serpin proteins. It widely expressed in different development stages and in various tissues, but highest expressed in fourth-instar larvae and in larval hemolymph. This Haserpin-e could be induced by Cry1Ac protoxin in vivo and inhibit the midgut proteases to activate Cry1Ac in vitro. Importantly, the functional study indicated it could inhibit the process from Cry1Ac protoxin to activated toxin, and led to the reduction of Cry1Ac insecticide activity to cotton bollworm. Based on our results, we proposed that Haserpin-e involved in the toxicity of Cry1Ac to cotton bollworm by blocking the serine protease to activate the protoxin.


Assuntos
Bacillus thuringiensis , Mariposas , Serpinas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas , Larva , Serpinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...