Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Blood ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657197

RESUMO

Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure, but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein serving as the final downstream effector of pyroptosis/interleukin (IL)-1pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd-deficiency ameliorated immunothrombosis, acute tissue injury and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1, as well as in neutrophil maturation, 2 integrin activation, and recruitment to TMA lesions, where they formed reduced neutrophil extracellular traps both in arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient human induced pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil 2 integrin activation, maturation as well as pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected mice from focal TMA, acute tissue injury and failure. Our data identify GSDMD as a key mediator of focal crystalline TMA and its consequences: ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for systemic forms of TMA.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38115607

RESUMO

Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.

4.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409530

RESUMO

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Assuntos
Artérias , Plaquetas , Quimiocinas , Ativação de Neutrófilo , Neutrófilos , Trombose , Plaquetas/imunologia , Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Quimiocinas/metabolismo , Trombose/imunologia , Ligante de CD40 , Neutrófilos/imunologia , Neutrófilos/metabolismo , Adesão Celular , Humanos
6.
Nat Cardiovasc Res ; 2(3): 307-321, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37476204

RESUMO

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.

7.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100060

RESUMO

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Assuntos
Interleucina-6 , RNA , Células Endoteliais/metabolismo , Receptor gp130 de Citocina , Endotélio/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
9.
Thromb Haemost ; 123(5): 545-554, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36596447

RESUMO

BACKGROUND AND AIM: The ability to recognize and monitor atherosclerotic lesion development using noninvasive imaging is crucial in preventive cardiology. The aim of the present study was to establish a protocol for longitudinal monitoring of plaque lipid, collagen, and macrophage burden as well as of endothelial permeability. METHODS AND RESULTS: Photoacoustic signals derived from endogenous or exogenous dyes assessed in vivo, in plaques of albino Apoe -/- mice, correlated with lesion characteristics obtained after histomorphometric and immunofluorescence analyses, thus supporting the validity of our protocol. Using models of atheroprogression and regression, we could apply our imaging protocol to the longitudinal observation of atherosclerotic lesion characteristics in mice. CONCLUSIONS: The present study shows an innovative approach to assess arterial inflammation in a non-invasive fashion, applicable to longitudinal analyses of changes of atherosclerotic lesion composition. Such approach could prove important in the preclinical testing of therapeutic interventions in mice carrying pre-established lesions.


Assuntos
Aterosclerose , Técnicas Fotoacústicas , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/patologia , Placa Aterosclerótica/patologia , Macrófagos/patologia , Diagnóstico por Imagem , Camundongos Knockout , Apolipoproteínas E/genética
10.
Immunol Rev ; 314(1): 357-375, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36315403

RESUMO

Over the past millennia, life expectancy has drastically increased. While a mere 25 years during Bronze and Iron ages, life expectancy in many European countries and in Japan is currently above 80 years. Such an increase in life expectancy is a result of improved diet, life style, and medical care. Yet, increased life span and aging also represent the most important non-modifiable risk factors for several pathologies including cardiovascular disease, neurodegenerative diseases, and cancer. In recent years, neutrophils have been implicated in all of these pathologies. Hence, this review provides an overview of how aging impacts neutrophil production and function and conversely how neutrophils drive aging-associated pathologies. Finally, we provide a perspective on how processes of neutrophil-driven pathologies in the context of aging can be targeted therapeutically.


Assuntos
Envelhecimento , Neutrófilos , Humanos , Longevidade , Expectativa de Vida , Fatores de Risco
11.
Cardiovasc Res ; 119(1): 155-166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35238350

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease of the arteries leading to the formation of atheromatous plaques. Human mesenchymal stem cells (hMSCs) are recruited from the circulation into plaques where in response to their environment they adopt a phenotype with immunomodulatory properties. However, the mechanisms underlying hMSC function in these processes are unclear. Recently, we described that miRNA let-7f controls hMSC invasion guided by inflammatory cytokines and chemokines. Here, we investigated the role of let-7f in hMSC tropism to human atheromas and the effects of the plaque microenvironment on cell fate and release of soluble factors. METHODS AND RESULTS: Incubation of hMSCs with LL-37, an antimicrobial peptide abundantly found in plaques, increased biosynthesis of let-7f and N-formyl peptide receptor 2 (FPR2), enabling chemotactic invasion of the cells towards LL-37, as determined by qRT-PCR, flow cytometry, and cell invasion assay analysis. In an Apoe-/- mouse model of atherosclerosis, circulating hMSCs preferentially adhered to athero-prone endothelium. This property was facilitated by elevated levels of let-7f in the hMSCs, as assayed by ex vivo artery perfusion and two-photon laser scanning microscopy. Exposure of hMSCs to homogenized human atheromatous plaque material considerably induced the production of various cytokines, chemokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinases, as studied by PCR array and western blot analysis. Moreover, exposure to human plaque extracts elicited differentiation of hMSCs into cells of the myogenic lineage, suggesting a potentially plaque-stabilizing effect. CONCLUSIONS: Our findings indicate that let-7f promotes hMSC tropism towards atheromas through the LL-37/FPR2 axis and demonstrate that hMSCs upon contact with human plaque environment develop a potentially athero-protective signature impacting the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Células-Tronco Mesenquimais , MicroRNAs , Placa Aterosclerótica , Camundongos , Animais , Humanos , MicroRNAs/genética , Aterosclerose/genética , Citocinas , Fatores Imunológicos
12.
Nat Rev Cardiol ; 19(9): 567-568, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882998
14.
Genes (Basel) ; 13(6)2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741852

RESUMO

Evolution is change over time. Although neutral changes promoted by drift effects are most reliable for phylogenetic reconstructions, selection-relevant changes are of only limited use to reconstruct phylogenies. On the other hand, comparative analyses of neutral and selected changes of protein-coding DNA sequences (CDS) retrospectively tell us about episodic constrained, relaxed, and adaptive incidences. The ratio of sites with nonsynonymous (amino acid altering) versus synonymous (not altering) mutations directly measures selection pressure and can be analysed by using the Phylogenetic Analysis by Maximum Likelihood (PAML) software package. We developed a CDS extractor for compiling protein-coding sequences (CDS-extractor) and parallel PAML (paPAML) to simplify, amplify, and accelerate selection analyses via parallel processing, including detection of negatively selected sites. paPAML compiles results of site, branch-site, and branch models and detects site-specific negative selection with the output of a codon list labelling significance values. The tool simplifies selection analyses for casual and inexperienced users and accelerates computing speeds up to the number of allocated computer threads. We then applied paPAML to examine the evolutionary impact on a new GINS Complex Subunit 3 exon, and neutrophil-associated as well as lysin and apolipoprotein genes. Compared with codeml (PAML version 4.9j) and HyPhy (HyPhy FEL version 2.5.26), all paPAML test runs performed with 10 computing threads led to identical selection pressure results, whereas the total selection analysis via paPAML, including all model comparisons, was about 3 to 5 times faster than the longest running codeml model and about 7 to 15 times faster than the entire processing time of these codeml runs.


Assuntos
Software , Códon , Fases de Leitura Aberta , Filogenia , Estudos Retrospectivos
15.
Basic Res Cardiol ; 117(1): 30, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674847

RESUMO

Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores CXCR , Animais , Aterosclerose/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores CXCR/metabolismo , Fator de Transcrição RelA/metabolismo
16.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587375

RESUMO

Elevated hematocrit is associated with cardiovascular risk; however, the causality and mechanisms are unclear. The JAK2V617F (Jak2VF) mutation increases cardiovascular risk in myeloproliferative disorders and in clonal hematopoiesis. Jak2VF mice with elevated WBCs, platelets, and RBCs display accelerated atherosclerosis and macrophage erythrophagocytosis. To investigate whether selective erythroid Jak2VF expression promotes atherosclerosis, we developed hyperlipidemic erythropoietin receptor Cre mice that express Jak2VF in the erythroid lineage (VFEpoR mice). VFEpoR mice without elevated blood cell counts showed increased atherosclerotic plaque necrosis, erythrophagocytosis, and ferroptosis. Selective induction of erythrocytosis with low-dose erythropoietin further exacerbated atherosclerosis with prominent ferroptosis, lipid peroxidation, and endothelial damage. VFEpoR RBCs had reduced antioxidant defenses and increased lipid hydroperoxides. Phagocytosis of human or murine WT or JAK2VF RBCs by WT macrophages induced ferroptosis, which was prevented by the ferroptosis inhibitor liproxstatin-1. Liproxstatin-1 reversed increased atherosclerosis, lipid peroxidation, ferroptosis, and endothelial damage in VFEpoR mice and in Jak2VF chimeric mice simulating clonal hematopoiesis, but had no impact in controls. Erythroid lineage Jak2VF expression led to qualitative and quantitative defects in RBCs that exacerbated atherosclerosis. Phagocytosis of RBCs by plaque macrophages promoted ferroptosis, suggesting a therapeutic target for reducing RBC-mediated cardiovascular risk.


Assuntos
Aterosclerose , Ferroptose , Linfo-Histiocitose Hemofagocítica , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Linhagem da Célula , Macrófagos/metabolismo , Camundongos , Fagocitose , Placa Aterosclerótica/metabolismo
17.
Nature ; 601(7893): 415-421, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34987220

RESUMO

Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues1,2. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs3-5. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation. By analysing more than 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioural descriptors of individual cells and used these high-dimensional datasets to build behavioural landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and uncovered a continuum of neutrophil states inside blood vessels, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioural screening in 24 mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and interference with Fgr protected mice from inflammatory injury. Thus, behavioural landscapes report distinct properties of dynamic environments at high cellular resolution.


Assuntos
Inflamação , Leucócitos , Proteômica , Animais , Forma Celular , Endotélio/imunologia , Inflamação/imunologia , Leucócitos/imunologia , Camundongos , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas/imunologia , Quinases da Família src/imunologia
18.
Cell Mol Immunol ; 19(2): 177-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35039631

RESUMO

Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.


Assuntos
Doenças Autoimunes , Hepatopatia Gordurosa não Alcoólica , Idoso , Doença Crônica , Humanos , Inflamação , Neutrófilos
19.
Adv Sci (Weinh) ; 9(7): e2103867, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35023328

RESUMO

Adeno-associated viruses (AAVs) are frequently used for gene transfer and gene editing in vivo, except for endothelial cells, which are remarkably resistant to unmodified AAV-transduction. AAVs are retargeted here toward endothelial cells by coating with second-generation polyamidoamine dendrimers (G2) linked to endothelial-affine peptides (CNN). G2CNN AAV9-Cre (encoding Cre recombinase) are injected into mTmG-mice or mTmG-pigs, cell-specifically converting red to green fluorescence upon Cre-activity. Three endothelial-specific functions are assessed: in vivo quantification of adherent leukocytes after systemic injection of - G2CNN AAV9 encoding 1) an artificial adhesion molecule (S1FG) in wildtype mice (day 10) or 2) anti-inflammatory Annexin A1 (Anxa1) in ApoE-/- mice (day 28). Moreover, 3) in Cas9-transgenic mice, blood pressure is monitored till day 56 after systemic application of G2CNN AAV9-gRNAs, targeting exons 6-10 of endothelial nitric oxide synthase (eNOS), a vasodilatory enzyme. G2CNN AAV9-Cre transduces microvascular endothelial cells in mTmG-mice or mTmG-pigs. Functionally, G2CNN AAV9-S1FG mediates S1FG-leukocyte adhesion, whereas G2CNN AAV9-Anxa1-application reduces long-term leukocyte recruitment. Moreover, blood pressure increases in Cas9-expressing mice subjected to G2CNN AAV9-gRNAeNOS . Therefore, G2CNN AAV9 may enable gene transfer in vascular and atherosclerosis models.


Assuntos
Dependovirus , Células Endoteliais , Animais , Pressão Sanguínea , Dependovirus/genética , Camundongos , Camundongos Transgênicos , Suínos , RNA Guia de Sistemas CRISPR-Cas
20.
Nat Cardiovasc Res ; 1(12): 1174-1186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37484062

RESUMO

Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...