Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373209

RESUMO

Diet-induced models of chronic kidney disease (CKD) offer several advantages, including clinical relevance and animal welfare, compared with surgical models. Oxalate is a plant-based, terminal toxic metabolite that is eliminated by the kidneys through glomerular filtration and tubular secretion. An increased load of dietary oxalate leads to supersaturation, calcium oxalate crystal formation, renal tubular obstruction, and eventually CKD. Dahl-Salt-Sensitive (SS) rats are a common strain used to study hypertensive renal disease; however, the characterization of other diet-induced models on this background would allow for comparative studies of CKD within the same strain. In the present study, we hypothesized that SS rats on a low-salt, oxalate rich diet would have increased renal injury and serve as novel, clinically relevant and reproducible CKD rat models. Ten-week-old male SS rats were fed either 0.2% salt normal chow (SS-NC) or a 0.2% salt diet containing 0.67% sodium oxalate (SS-OX) for five weeks.Real-time PCR demonstrated an increased expression of inflammatory marker interleukin-6 (IL-6) (p < 0.0001) and fibrotic marker Timp-1 metalloproteinase (p < 0.0001) in the renal cortex of SS-OX rat kidneys compared with SS-NC. The immunohistochemistry of kidney tissue demonstrated an increase in CD-68 levels, a marker of macrophage infiltration in SS-OX rats (p < 0.001). In addition, SS-OX rats displayed increased 24 h urinary protein excretion (UPE) (p < 0.01) as well as significant elevations in plasma Cystatin C (p < 0.01). Furthermore, the oxalate diet induced hypertension (p < 0.05). A renin-angiotensin-aldosterone system (RAAS) profiling (via liquid chromatography-mass spectrometry; LC-MS) in the SS-OX plasma showed significant (p < 0.05) increases in multiple RAAS metabolites including angiotensin (1-5), angiotensin (1-7), and aldosterone. The oxalate diet induces significant renal inflammation, fibrosis, and renal dysfunction as well as RAAS activation and hypertension in SS rats compared with a normal chow diet. This study introduces a novel diet-induced model to study hypertension and CKD that is more clinically translatable and reproducible than the currently available models.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Ratos , Animais , Ratos Endogâmicos Dahl , Oxalatos/metabolismo , Rim/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Insuficiência Renal Crônica/metabolismo , Dieta/efeitos adversos , Pressão Sanguínea
2.
Antioxidants (Basel) ; 11(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35326240

RESUMO

Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes' exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...