Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 173: 171151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215943

RESUMO

Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disorder in which vasopressin-secreting neurons degenerate over time due to the production of mutant proteins. We have demonstrated therapeutic effects of chemical chaperones in an FNDI mouse model, but the complexity and length of this evaluation were problematic. In this study, we established disease-specific mouse induced pluripotent stem cells (iPSCs) from FNDI-model mice and differentiated vasopressin neurons that produced mutant proteins. Fluorescence immunostaining showed that chemical chaperones appeared to protect vasopressin neurons generated from iPSCs derived from FNDI-model mice. Although KCL stimulation released vasopressin hormone from vasopressin neurons generated from FNDI-derived iPSCs, vasopressin hormone levels did not differ significantly between baseline and chaperone-added culture. Semi-quantification of vasopressin carrier protein and mutant protein volumes in vasopressin neurons confirmed that chaperones exerted a therapeutic effect. This research provides fundamental technology for creating in vitro disease models using human iPSCs and can be applied to therapeutic evaluation of various degenerative diseases that produce abnormal proteins.


Assuntos
Diabetes Insípido Neurogênico , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Arginina Vasopressina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Vasopressinas/farmacologia , Vasopressinas/metabolismo , Diabetes Insípido Neurogênico/metabolismo , Neurofisinas/genética , Proteínas Mutantes/metabolismo , Mutação
2.
Stem Cell Reports ; 18(8): 1657-1671, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295423

RESUMO

Pituitary organoids are promising graft sources for transplantation in treatment of hypopituitarism. Building on development of self-organizing culture to generate pituitary-hypothalamic organoids (PHOs) using human pluripotent stem cells (hPSCs), we established techniques to generate PHOs using feeder-free hPSCs and to purify pituitary cells. The PHOs were uniformly and reliably generated through preconditioning of undifferentiated hPSCs and modulation of Wnt and TGF-ß signaling after differentiation. Cell sorting using EpCAM, a pituitary cell-surface marker, successfully purified pituitary cells, reducing off-target cell numbers. EpCAM-expressing purified pituitary cells reaggregated to form three-dimensional pituitary spheres (3D-pituitaries). These exhibited high adrenocorticotropic hormone (ACTH) secretory capacity and responded to both positive and negative regulators. When transplanted into hypopituitary mice, the 3D-pituitaries engrafted, improved ACTH levels, and responded to in vivo stimuli. This method of generating purified pituitary tissue opens new avenues of research for pituitary regenerative medicine.


Assuntos
Hormônio Adrenocorticotrópico , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Molécula de Adesão da Célula Epitelial , Técnicas de Cultura de Células/métodos , Diferenciação Celular
3.
Stem Cell Reports ; 18(4): 869-883, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963388

RESUMO

When damaged, restoring the function of the hypothalamus is currently impossible. It is unclear whether neural stem cells exist in the hypothalamus. Studies have reported that adult rodent tanycytes around the third ventricle function as hypothalamic neural stem cell-like cells. However, it is currently impossible to collect periventricular cells from humans. We attempted to generate hypothalamic neural stem cell-like cells from human embryonic stem cells (ESCs). We focused on retina and anterior neural fold homeobox (RAX) because its expression is gradually restricted to tanycytes during the late embryonic stage. We differentiated RAX::VENUS knockin human ESCs (hESCs) into hypothalamic organoids and sorted RAX+ cells from mature organoids. The isolated RAX+ cells formed neurospheres and exhibited self-renewal and multipotency. Neurogenesis was observed when neurospheres were transplanted into the mouse hypothalamus. We isolated RAX+ hypothalamic neural stem cell-like cells from wild-type human ES organoids. This is the first study to differentiate human hypothalamic neural stem cell-like cells from pluripotent stem cells.


Assuntos
Células-Tronco Neurais , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Hipotálamo/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1130465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936140

RESUMO

Introduction: The pituitary gland, regulating various hormones, is central in the endocrine system. As spontaneous recovery from hypopituitarism is rare, and exogenous-hormone substitution is clumsy, pituitary replacement via regenerative medicine, using pluripotent stem cells, is desirable. We have developed a differentiation method that in mice yields pituitary organoids (POs) derived from human embryonic stem cells (hESC). Efficacy of these POs, transplanted subcutaneously into hypopituitary mice, in reversing hypopituitarism was studied. Methods: hESC-derived POs were transplanted into inguinal subcutaneous white adipose tissue (ISWAT) and beneath dorsal skin, a relatively avascular region (AR), of hypophysectomized severe combined immunodeficient (SCID) mice. Pituitary function was evaluated thereafter for ¾ 6mo, assaying basal plasma ACTH and ACTH response to corticotropin-releasing hormone (CRH) stimulation. Histopathologic examination of organoids 150d after transplantation assessed engraftment. Some mice received an inhibitor of vascular endothelial growth factor (VEGF) to permit assessment of how angiogenesis contributed to subcutaneous engraftment. Results: During follow-up, both basal and CRH-stimulated plasma ACTH levels were significantly higher in the ISWAT group (p < 0.001 - 0.05 and 0.001 - 0.005, respectively) than in a sham-operated group. ACTH secretion also was higher in the ISWAT group than in the AR group. Histopathologic study found ACTH-producing human pituitary-cell clusters in both groups of allografts, which had acquired a microvasculature. POs qPCR showed expression of angiogenetic factors. Plasma ACTH levels decreased with VEGF-inhibitor administration. Conclusions: Subcutaneous transplantation of hESC-derived POs into hypopituitary SCID mice efficaciously renders recipients ACTH-sufficient.


Assuntos
Células-Tronco Embrionárias Humanas , Hipopituitarismo , Doenças da Hipófise , Humanos , Camundongos , Animais , Células-Tronco Embrionárias Humanas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Camundongos SCID , Hipófise/metabolismo , Doenças da Hipófise/metabolismo , Hipopituitarismo/metabolismo
5.
Sci Rep ; 12(1): 17381, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253431

RESUMO

Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.


Assuntos
Diabetes Insípido Neurogênico , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo , Vasopressinas/metabolismo
6.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085394

RESUMO

Prolactin (PRL), a hormone involved in lactation, is mainly produced and secreted by the lactotrophs of the anterior pituitary (AP) gland. We previously reported a method to generate functional adrenocorticotropic hormone-producing cells by differentiating the AP and hypothalamus simultaneously from human induced pluripotent stem cells (iPSCs). However, PRL-producing cells in the induced AP have not been investigated. Here, we confirmed the presence of PRL-producing cells and evaluated their endocrine functions. We differentiated pituitary cells from human iPSCs using serum-free floating culture of embryoid-like aggregates with quick reaggregation (SFEB-q) method and evaluated the appearance and function of PRL-producing cells. Secretion of PRL from the differentiated aggregates was confirmed, which increased with further culture. Fluorescence immunostaining and immunoelectron microscopy revealed PRL-producing cells and PRL-positive secretory granules, respectively. PRL secretion was promoted by various prolactin secretagogues such as thyrotropin-releasing hormone, vasoactive intestinal peptide, and prolactin-releasing peptide, and inhibited by bromocriptine. Moreover, the presence of tyrosine hydroxylase-positive dopaminergic nerves in the hypothalamic tissue area around the center of the aggregates connecting to PRL-producing cells indicated the possibility of recapitulating PRL regulatory mechanisms through the hypothalamus. In conclusion, we generated pituitary lactotrophs from human iPSCs; these displayed similar secretory responsiveness as human pituitary cells in vivo. In the future, this is expected to be used as a model of human PRL-producing cells for various studies, such as drug discovery, prediction of side effects, and elucidation of tumorigenic mechanisms using disease-specific iPSCs. Furthermore, it may help to develop regenerative medicine for the pituitary gland.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Lactotrofos/fisiologia , Adeno-Hipófise/citologia , Prolactina/biossíntese , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lactotrofos/efeitos dos fármacos , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Tireotropina/farmacologia , Peptídeo Intestinal Vasoativo/farmacologia
7.
Stem Cell Res ; 48: 101960, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927425

RESUMO

Four disease-specific induced pluripotent stem cell (iPSC) lines were respectively derived from peripheral blood mononuclear cells of two affected individuals in a family affected by familial neurohypophyseal diabetes insipidus carrying the c.314G>C mutation. The expression of pluripotency markers (NANOG, OCT4, and SOX2), maintenance of a normal karyotype, absence of episomal vectors used for iPSC generation, and presence of the original pathogenic mutation were confirmed for each iPSC line. The ability to differentiate into three germ layers was confirmed by a teratoma formation assay. These iPSC lines can help in disease recapitulation in vitro using organoids and elucidation of disease mechanisms.


Assuntos
Diabetes Insípido Neurogênico , Diabetes Mellitus , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Linhagem Celular , Humanos , Leucócitos Mononucleares , Mutação
8.
Stem Cell Res ; 40: 101572, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31539858

RESUMO

High differentiation efficiency is one of the most important factors in developing an in vitro model from pluripotent stem cells. In this report, we improved the handling technique applied to mouse-induced pluripotent stem (iPS) cells, resulting in better differentiation into hypothalamic vasopressin (AVP) neurons. We modified the culture procedure to make the maintenance of iPS cells in an undifferentiated state much easier. Three-dimensional floating culture was demonstrated to be effective for mouse iPS cells. We also improved the differentiation method with regards to embryology, resulting in a greater number of bigger colonies of AVP neurons differentiating from mouse iPS cells. Fgf8, which was not used in the original differentiation method, increased iPS differentiation into AVP neurons. These refinements will be useful as a valuable tool for the modeling of degenerative disease in AVP neurons in vitro using disease-specific iPS cells in future studies.


Assuntos
Diferenciação Celular , Linhagem Celular/citologia , Hipotálamo/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/citologia , Animais , Linhagem Celular/metabolismo , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Vasopressinas/metabolismo
9.
Endocrinology ; 160(7): 1701-1718, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135891

RESUMO

Tanycytes have recently been accepted as neural stem/progenitor cells in the postnatal hypothalamus. Persistent retina and anterior neural fold homeobox (Rax) expression is characteristic of tanycytes in contrast to its transient expression of whole hypothalamic precursors. In this study, we found that Rax+ residual cells in the maturation phase of hypothalamic differentiation in mouse embryonic stem cell (mESC) cultures had similar characteristics to ventral tanycytes. They expressed typical neural stem/progenitor cell markers, including Sox2, vimentin, and nestin, and differentiated into mature neurons and glial cells. Quantitative RT-PCR analysis showed that Rax+ residual cells expressed Fgf-10, Fgf-18, and Lhx2, which are expressed by ventral tanycytes. They highly expressed tanycyte-specific genes Dio2 and Gpr50 compared with Rax+ early hypothalamic progenitor cells. Therefore, Rax+ residual cells in the maturation phase of hypothalamic differentiation were considered to be more differentiated and similar to late progenitor cells and tanycytes. They self-renewed and formed neurospheres when cultured with exogenous FGF-2. Additionally, these Rax+ neurospheres differentiated into three neuronal lineages (neurons, astrocytes, and oligodendrocytes), including neuropeptide Y+ neuron, that are reported to be differentiated from ventral tanycytes toward the arcuate nuclei. Thus, Rax+ residual cells were multipotent neural stem/progenitor cells. Rax+ neurospheres were stably passaged and retained high Sox2 expression even after multiple passages. These results suggest the successful induction of Rax+ tanycyte-like cells from mESCs [induced tanycyte-like (iTan) cells]. These hypothalamic neural stem/progenitor cells may have potential in regenerative medicine and as a research tool.


Assuntos
Linhagem da Célula/fisiologia , Células-Tronco Embrionárias/metabolismo , Células Ependimogliais/metabolismo , Hipotálamo/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células Ependimogliais/citologia , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hipotálamo/citologia , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Fatores de Transcrição/metabolismo
10.
Nat Commun ; 6: 8896, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26573335

RESUMO

The developing dorsomedial telencephalon includes the medial pallium, which goes on to form the hippocampus. Generating a reliable source of human hippocampal tissue is an important step for cell-based research into hippocampus-related diseases. Here we show the generation of functional hippocampal granule- and pyramidal-like neurons from self-organizing dorsomedial telencephalic tissue using human embryonic stem cells (hESCs). First, we develop a hESC culture method that utilizes bone morphogenetic protein (BMP) and Wnt signalling to induce choroid plexus, the most dorsomedial portion of the telencephalon. Then, we find that titrating BMP and Wnt exposure allowed the self-organization of medial pallium tissues. Following long-term dissociation culture, these dorsomedial telencephalic tissues give rise to Zbtb20(+)/Prox1(+) granule neurons and Zbtb20(+)/KA1(+) pyramidal neurons, both of which were electrically functional with network formation. Thus, we have developed an in vitro model that recapitulates human hippocampus development, allowing the generation of functional hippocampal granule- and pyramidal-like neurons.


Assuntos
Plexo Corióideo/embriologia , Hipocampo/embriologia , Células-Tronco Embrionárias Humanas/citologia , Células Piramidais/citologia , Telencéfalo/embriologia , Proteínas Morfogenéticas Ósseas/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Plexo Corióideo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Telencéfalo/efeitos dos fármacos , Proteínas Wnt/farmacologia , Via de Sinalização Wnt
11.
Proc Natl Acad Sci U S A ; 110(50): 20284-9, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277810

RESUMO

Here, using further optimized 3D culture that allows highly selective induction and long-term growth of human ES cell (hESC)-derived cortical neuroepithelium, we demonstrate unique aspects of self-organization in human neocorticogenesis. Self-organized cortical tissue spontaneously forms a polarity along the dorsocaudal-ventrorostral axis and undergoes region-specific rolling morphogenesis that generates a semispherical structure. The neuroepithelium self-forms a multilayered structure including three neuronal zones (subplate, cortical plate, and Cajal-Retzius cell zones) and three progenitor zones (ventricular, subventricular, and intermediate zones) in the same apical-basal order as seen in the human fetal cortex in the early second trimester. In the cortical plate, late-born neurons tend to localize more basally to early-born neurons, consistent with the inside-out pattern seen in vivo. Furthermore, the outer subventricular zone contains basal progenitors that share characteristics with outer radial glia abundantly found in the human, but not mouse, fetal brain. Thus, human neocorticogenesis involves intrinsic programs that enable the emergence of complex neocortical features.


Assuntos
Polaridade Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Organogênese/fisiologia , Amidas , Técnicas de Cultura de Células , Colágeno , Combinação de Medicamentos , Humanos , Laminina , Neuroglia/citologia , Proteoglicanas , Piridinas , Especificidade da Espécie
12.
Nature ; 480(7375): 57-62, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22080957

RESUMO

The adenohypophysis (anterior pituitary) is a major centre for systemic hormones. At present, no efficient stem-cell culture for its generation is available, partly because of insufficient knowledge about how the pituitary primordium (Rathke's pouch) is induced in the embryonic head ectoderm. Here we report efficient self-formation of three-dimensional adenohypophysis tissues in an aggregate culture of mouse embryonic stem (ES) cells. ES cells were stimulated to differentiate into non-neural head ectoderm and hypothalamic neuroectoderm in adjacent layers within the aggregate, and treated with hedgehog signalling. Self-organization of Rathke's-pouch-like three-dimensional structures occurred at the interface of these two epithelia, as seen in vivo, and various endocrine cells including corticotrophs and somatotrophs were subsequently produced. The corticotrophs efficiently secreted adrenocorticotropic hormone in response to corticotrophin releasing hormone and, when grafted in vivo, these cells rescued the systemic glucocorticoid level in hypopituitary mice. Thus, functional anterior pituitary tissue self-forms in ES cell culture, recapitulating local tissue interactions.


Assuntos
Células-Tronco Embrionárias/citologia , Adeno-Hipófise/citologia , Adeno-Hipófise/embriologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Ectoderma/citologia , Ectoderma/embriologia , Células Endócrinas/citologia , Células Endócrinas/metabolismo , Hipopituitarismo/patologia , Hipotálamo/citologia , Hipotálamo/embriologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...