Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cachexia Sarcopenia Muscle ; 15(1): 306-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123165

RESUMO

BACKGROUND: Age-related loss of strength is disproportionally greater than the loss of mass, suggesting maladaptations in the neuro-myo-tendinous system. Myofibers are often misshaped in aged and diseased muscle, but systematic analyses of large sample sets are lacking. Our aim was to investigate myofiber shape in relation to age, exercise, myofiber type, species and sex. METHODS: Vastus lateralis muscle biopsies (n = 265) from 197 males and females, covering an age span of 20-97 years, were examined. The gastrocnemius and soleus muscles of 11 + 22-month-old male C57BL/6 mice were also examined. Immunofluorescence and ATPase stainings of muscle cross-sections were used to measure myofiber cross-sectional area (CSA) and perimeter. From these, a shape factor index (SFI) was calculated in a fibre-type-specific manner (type I/II in humans; type I/IIa/IIx/IIb in mice), with higher values indicating increased deformity. Heavy resistance training (RT) was performed three times per week for 3-4 months by a subgroup (n = 59). Correlation analyses were performed comparing SFI and CSA with age, muscle mass, maximal voluntary contraction (MVC), rate of force development and specific force (MVC/muscle mass). RESULTS: In human muscle, SFI was positively correlated with age for both type I (R2  = 0.20) and II (R2  = 0.38) myofibers. When subjects were separated into age cohorts, SFI was lower for type I (4%, P < 0.001) and II (6%, P < 0.001) myofibers in young (20-36) compared with old (60-80) and higher for type I (5%, P < 0.05) and II (14%, P < 0.001) myofibers in the oldest old (>80) compared with old. The increased SFI in old muscle was observed in myofibers of all sizes. Within all three age cohorts, type II myofiber SFI was higher than that for type I myofiber (4-13%, P < 0.001), which was also the case in mice muscles (8-9%, P < 0.001). Across age cohorts, there was no difference between males and females in SFI for either type I (P = 0.496/0.734) or II (P = 0.176/0.585) myofibers. Multiple linear regression revealed that SFI, after adjusting for age and myofiber CSA, has independent explanatory power for 8/10 indices of muscle mass and function. RT reduced SFI of type II myofibers in both young and old (3-4%, P < 0.001). CONCLUSIONS: Here, we identify type I and II myofiber shape in humans as a hallmark of muscle ageing that independently predicts volumetric and functional assessments of muscle health. RT reverts the shape of type II myofibers, suggesting that a lack of myofiber recruitment might lead to myofiber deformity.


Assuntos
Doenças Musculares , Treinamento Resistido , Feminino , Humanos , Masculino , Camundongos , Animais , Idoso de 80 Anos ou mais , Idoso , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Lactente , Pré-Escolar , Fibras Musculares Esqueléticas/patologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Envelhecimento/fisiologia , Doenças Musculares/patologia
4.
J Gen Physiol ; 155(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37227464

RESUMO

It has recently been established that myosin, the molecular motor protein, is able to exist in two conformations in relaxed skeletal muscle. These conformations are known as the super-relaxed (SRX) and disordered-relaxed (DRX) states and are finely balanced to optimize ATP consumption and skeletal muscle metabolism. Indeed, SRX myosins are thought to have a 5- to 10-fold reduction in ATP turnover compared with DRX myosins. Here, we investigated whether chronic physical activity in humans would be associated with changes in the proportions of SRX and DRX skeletal myosins. For that, we isolated muscle fibers from young men of various physical activity levels (sedentary, moderately physically active, endurance-trained, and strength-trained athletes) and ran a loaded Mant-ATP chase protocol. We observed that in moderately physically active individuals, the amount of myosin molecules in the SRX state in type II muscle fibers was significantly greater than in age-matched sedentary individuals. In parallel, we did not find any difference in the proportions of SRX and DRX myosins in myofibers between highly endurance- and strength-trained athletes. We did however observe changes in their ATP turnover time. Altogether, these results indicate that physical activity level and training type can influence the resting skeletal muscle myosin dynamics. Our findings also emphasize that environmental stimuli such as exercise have the potential to rewire the molecular metabolism of human skeletal muscle through myosin.


Assuntos
Miosinas , Miosinas de Músculo Esquelético , Masculino , Humanos , Miosinas de Músculo Esquelético/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Exp Gerontol ; 169: 111974, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228835

RESUMO

Skeletal muscle injury in aged rodents is characterized by an asynchronous infiltration of pro- and anti-inflammatory macrophage waves, leading to improper and incomplete regeneration. It is unclear whether this aberration also occurs in aged human muscle. In this study, we quantified the macrophage responses in a human model of muscle damage and regeneration induced by electrical stimulation in 7 young and 21 older adults. At baseline, total resident macrophage (CD68+/DAPI+) content was not different between young and old subjects, but pro-inflammatory (CD206-/CD68+/DAPI+) macrophage content was lower in the old. Following damage, muscle Infiltration of CD206-/CD68+/DAPI+ macrophages was lower in old relative to young subjects. Further, only the increase in CD206-/CD68+ macrophages correlated with the change in muscle satellite cell content. Our data show that older individuals have a compromised macrophage response during muscle regeneration, pointing to an altered inflammatory response as a potential mechanism for reduced muscle regenerative efficacy in aged humans.


Assuntos
Macrófagos , Músculo Esquelético , Humanos , Idoso , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Envelhecimento , Regeneração , Cicatrização
7.
Aging (Albany NY) ; 14(16): 6829-6839, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36040386

RESUMO

Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication were the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. The proposal of these hallmarks of ageing has been instrumental in guiding and pushing forward research on the biology of ageing. In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones. Amalgamation of the 'old' and 'new' hallmarks of ageing may provide a more comprehensive explanation of ageing and age-related diseases, shedding light on interventional and therapeutic studies to achieve healthy, happy, and productive lives in the elderly.


Assuntos
Envelhecimento , Epigênese Genética , Idoso , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Instabilidade Genômica , Humanos , Telômero
8.
Am J Physiol Cell Physiol ; 323(1): C159-C169, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649253

RESUMO

Muscle fiber denervation is a major contributor to the decline in muscle mass and function during aging. Heavy resistance exercise is an effective tool for increasing muscle mass and strength, but whether it can rescue denervated muscle fibers remains unclear. Therefore, the purpose of this study was to investigate the potential of heavy resistance exercise to modify indices of denervation in healthy elderly individuals. Thirty-eight healthy elderly men (72 ± 5 yr) underwent 16 wk of heavy resistance exercise, whereas 20 healthy elderly men (72 ± 6 yr) served as nonexercising sedentary controls. Muscle biopsies were obtained pre and post training, and midway at 8 wk. Biopsies were analyzed by immunofluorescence for the prevalence of myofibers expressing embryonic myosin [embryonic myosin heavy chain (MyHCe)], neonatal myosin [neonatal myosin heavy chain (MyHCn)], nestin, and neural cell adhesion molecule (NCAM), and by RT-qPCR for gene expression levels of acetylcholine receptor (AChR) subunits, MyHCn, MyHCe, p16, and Ki67. In addition to increases in strength and type II fiber hypertrophy, heavy resistance exercise training led to a decrease in AChR α1 and ε subunit messenger RNA (mRNA; at 8 wk). Changes in gene expression levels of the α1 and ε AChR subunits with 8 wk of heavy resistance exercise supports the role of this type of exercise in targeting stability of the neuromuscular junction. The number of fibers positive for NCAM, nestin, and MyHCn was not affected, suggesting that a longer timeframe is needed for adaptations to manifest at the protein level.


Assuntos
Denervação Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Receptores Colinérgicos , Treinamento Resistido , Transcriptoma , Idoso , Estudos de Casos e Controles , Imunofluorescência , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Nestina/metabolismo , Receptores Colinérgicos/metabolismo
9.
Exp Cell Res ; 417(1): 113164, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526568

RESUMO

Skeletal muscle possesses remarkable adaptability to mechanical loading and regenerative potential following muscle injury primarily due to satellite cell activity. Although the roles of several types of interstitial cells in skeletal muscle have been documented, the signaling interplay between the skeletal muscle and the adjacent tendon tissue has not been elucidated. Here, we tested whether human tendon derived cells (tenocytes) could induce human myogenic cells (myoblasts) proliferation and differentiation in vitro using co-culture experiments that allowed us to investigate the effect of tenocytes secretion upon myogenic progression. This was done in vitro by introducing insert wells with either myoblasts, tenocytes, or no cells (control) into a myoblast containing well (co-culture). Immunofluorescence analysis revealed a higher fusion index (≥5 nuclei within one Desmin + myotube) and a higher myotube diameter in co-cultures with tenocytes compared to myoblasts condition. Correspondingly, MHC-IIX gene expression was up-regulated when co-cultured with tenocytes. However, the proliferation of myoblasts (either Ki67 or BrdU + cells) was not enhanced under the presence of tenocytes. These findings show that tenocytes influence myotube formation upon human primary cells in vitro and contribute to understanding the role of tendon derived cells in skeletal muscle during development and regeneration.


Assuntos
Fibras Musculares Esqueléticas , Mioblastos , Diferenciação Celular , Células Cultivadas , Humanos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Tendões
10.
J Physiol ; 600(8): 1969-1989, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229299

RESUMO

Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age-matched sedentary (SED) and young subjects. Lean body mass and maximal voluntary contraction were assessed, and a strength training bout was performed. From muscle biopsies, tissue and primary myogenic cell cultures were analysed by immunofluorescence and RT-qPCR to assess myofibre denervation and satellite cell quantity and function. LLEX demonstrated superior muscle function under challenged conditions. When compared with SED, the muscle of LLEX was found to contain a greater content of satellite cells associated with type II myofibres specifically, along with higher mRNA levels of the beta and gamma acetylcholine receptors (AChR). No difference was observed between LLEX and SED for the proportion of denervated fibres or satellite cell function, as assessed in vitro by myogenic cell differentiation and fusion index assays. When compared with inactive counterparts, the skeletal muscle of lifelong exercisers is characterised by greater fatigue resistance under challenged conditions in vivo, together with a more youthful tissue satellite cell and AChR profile. Our data suggest a little recreational level exercise goes a long way in protecting against the emergence of classic phenotypic traits associated with the aged muscle. KEY POINTS: The detrimental effects of ageing can be partially offset by lifelong self-organized recreational exercise, as evidence by preserved type II myofibre-associated satellite cells, a beneficial muscle innervation status and greater fatigue resistance under challenged conditions. Satellite cell function (in vitro), muscle fibre size and muscle fibre denervation determined by immunofluorescence were not affected by recreational exercise. Individuals that are recreationally active are far more abundant than master athletes, which sharply increases the translational perspective of the present study. Future studies should further investigate recreational activity in relation to muscle health, while also including female participants.


Assuntos
Exercício Físico , Células Satélites de Músculo Esquelético , Idoso , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco
11.
Physiol Rep ; 9(21): e15077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34713978

RESUMO

Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co-cultured with cerebellar granule neurons from two litters of 7-day-old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT-PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co-culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co-culture, versus monoculture, whereas in muscle medium co-culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling.


Assuntos
Comunicação Celular , Mioblastos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Transdução de Sinais , Adolescente , Adulto , Animais , Células Cultivadas , Cerebelo/citologia , Técnicas de Cocultura/métodos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Mioblastos/citologia , Miogenina/genética , Miogenina/metabolismo , Crescimento Neuronal , Ratos , Ratos Wistar , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Vimentina/genética , Vimentina/metabolismo
12.
Am J Physiol Cell Physiol ; 321(2): C317-C329, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161153

RESUMO

Muscle fiber denervation is a major contributor to the decline in physical function observed with aging. Denervation can occur through breakdown of the neuromuscular junctions (NMJ) itself, affecting only that particular fiber, or through the death of a motor neuron, which can lead to a loss of all the muscle fibers in that motor unit. In this review, we discuss the muscle-nerve relationship, where signaling from both the motor neuron and the muscle fiber is required for maximal preservation of neuromuscular function in old age. Physical activity is likely to be the most important single factor that can contribute to this preservation. Furthermore, we propose that inactivity is not an innocent bystander, but plays an active role in denervation through the production of signals hostile to neuron survival. Investigating denervation in human muscle tissue samples is challenging due to the shared protein profile of regenerating and denervated muscle fibers. In this review, we provide a detailed overview of the key traits observed in immunohistochemical preparations of muscle biopsies from healthy, young, and elderly individuals. Overall, a combination of assessing tissue samples, circulating biomarkers, and electrophysiological assessments in humans will prove fruitful in the quest to gain more understanding of denervation of skeletal muscle. In addition, cell culture models represent a valuable tool in the search for key signaling factors exchanged between muscle and nerve, and which exercise has the capacity to alter.


Assuntos
Envelhecimento/metabolismo , Exercício Físico/fisiologia , Denervação Muscular , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo
14.
Cells ; 9(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268508

RESUMO

The decline in muscle mass and function with age is partly caused by a loss of muscle fibres through denervation. The purpose of this study was to investigate the potential of exercise to influence molecular targets involved in neuromuscular junction (NMJ) stability in healthy elderly individuals. Participants from two studies (one group of 12 young and 12 elderly females and another group of 25 elderly males) performed a unilateral bout of resistance exercise. Muscle biopsies were collected at 4.5 h and up to 7 days post exercise for tissue analysis and cell culture. Molecular targets related to denervation and NMJ stability were analysed by immunohistochemistry and real-time reverse transcription polymerase chain reaction. In addition to a greater presence of denervated fibres, the muscle samples and cultured myotubes from the elderly individuals displayed altered gene expression levels of acetylcholine receptor (AChR) subunits. A single bout of exercise induced general changes in AChR subunit gene expression within the biopsy sampling timeframe, suggesting a sustained plasticity of the NMJ in elderly individuals. These data support the role of exercise in maintaining NMJ stability, even in elderly inactive individuals. Furthermore, the cell culture findings suggest that the transcriptional capacity of satellite cells for AChR subunit genes is negatively affected by ageing.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Denervação Muscular/métodos , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
FASEB J ; 34(5): 6418-6436, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32167202

RESUMO

Blunted muscle hypertrophy and impaired regeneration with aging have been partly attributed to satellite cell (SC) dysfunction. However, true muscle regeneration has not yet been studied in elderly individuals. To investigate this, muscle injury was induced by 200 electrically stimulated (ES) eccentric contractions of the vastus lateralis (VL) of one leg in seven young (20-31 years) and 19 elderly men (60-73 years). This was followed by 13 weeks of resistance training (RT) for both legs to investigate the capacity for hypertrophy. Muscle biopsies were collected Pre- and Post-RT, and 9 days after ES, for immunohistochemistry and RT-PCR. Hypertrophy was assessed by MRI, DEXA, and immunohistochemistry. Overall, surprisingly comparable responses were observed between the young and elderly. Nine days after ES, Pax7+ SC number had doubled (P < .05), alongside necrosis and substantial changes in expression of genes related to matrix, myogenesis, and innervation (P < .05). Post-RT, VL cross-sectional area had increased in both legs (~15%, P < .05) and SCs/type II fiber had increased ~2-4 times more with ES+RT vs RT alone (P < .001). Together these novel findings demonstrate "youthful" regeneration and hypertrophy responses in human elderly muscle. Furthermore, boosting SC availability in healthy elderly men does not enhance the subsequent muscle hypertrophy response to RT.


Assuntos
Envelhecimento , Hipertrofia/fisiopatologia , Desenvolvimento Muscular , Músculo Esquelético/citologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Adulto , Idoso , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Músculo Quadríceps/citologia , Músculo Quadríceps/fisiologia , Treinamento Resistido , Células Satélites de Músculo Esquelético/fisiologia , Adulto Jovem
16.
Muscle Nerve ; 60(4): 453-463, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314910

RESUMO

INTRODUCTION: Muscle fiber denervation increases with age, yet studies at the tissue level are sparse due to the challenging nature of establishing the relative role of regeneration and denervation. METHODS: Muscle biopsies were obtained from the vastus lateralis of 70 healthy men (aged 72 ± 6 years; range, 65-94). Messenger RNA (mRNA) levels of acetylcholine receptors (AchR) were measured, and sections were stained for embryonic myosin, neonatal myosin (MHCn ), and neural cell adhesion molecule (NCAM). RESULTS: Embryonic myosin+ fibers were rare, while MHCn+ and NCAM+ fibers were observed in all samples. Age (range, 65-94 years) was negatively associated with AchRγ mRNA. DISCUSSION: Muscle from healthy older individuals expressed developmental myosins to varying degrees but more than has been previously reported for young individuals. Along with the AchR correlations, we propose that these findings support the presence of neuromuscular junction destabilization, denervation, and reinnervation in aging human skeletal muscle.


Assuntos
Envelhecimento/genética , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/genética , Moléculas de Adesão de Célula Nervosa/genética , Músculo Quadríceps/inervação , Receptores Colinérgicos/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Músculo Quadríceps/metabolismo , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...