Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3580, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869142

RESUMO

Leaf traits, which vary across different climatic conditions, can reveal evolutionary changes within a species made to adapt to the environment. Leaf traits play major roles in a plant functions under varying climatic conditions. To examine adaptive modes and mechanisms applied by plants in different climates, we analyzed leaf morphology and anatomical structures in Quercus brantii in the Zagros forests, Western Iran. The plants adapted to the environmental differences with increased dry matter content in a Mediterranean climate, and increasing leaf length, specific leaf area, stomata length (SL), stomata width, stomatal density (SD), stomatal pore index (SPI), trichome length, and width in a sub-humid climate; trichome density was increased in a semi-arid climate. There were strong, positive correlations between SPI with SL and SD. Correlations for other leaf traits were weakly significant. Such morphological and anatomical plasticity probably leads to lower transpiration rates, control of internal temperature and water status, and improved photosynthetic capability under stressing conditions. These findings provide new insights into the adaptive strategies of plants to environmental changes at the morphological and anatomical levels.


Assuntos
Quercus , Evolução Biológica , Transporte Biológico , Clima Desértico , Folhas de Planta
2.
Plants (Basel) ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679089

RESUMO

Drought has serious effects on forests, especially semi-arid and arid forests, around the world. Zagros Forest in Iran has been severely affected by drought, which has led to the decline of the most common tree species, Persian oak (Quercus brantii). The objective of this study was to determine the effects of drought on the anatomical structure of Persian oak. Three healthy and three declined trees were sampled from each of two forest sites in Ilam Forest. Discs were cut at breast height, and three sapwood blocks were taken near the bark of each tree for sectioning. The anatomical characteristics measured included fiber length (FL), fiber wall thickness (FWT), number of axial parenchymal cells (NPC), ray number (RN), ray width (RW), and number of calcium oxalate crystals. Differences between healthy and declined trees were observed in the abundance of NPC and in RN, FL, and FWT, while no differences occurred in the number of oxalate crystals. The decline had uncertain effects on the FL of trees from sites A and B, which showed values of 700.5 and 837.3 µm compared with 592.7 and 919.6 µm in healthy trees. However, the decline resulted in an increase in the FWT of trees from sites A and B (9.33 and 11.53 µm) compared with healthy trees (5.23 and 9.56 µm). NPC, RN, and RW also increased in declined individuals from sites A and B (28.40 and 28.40 mm−1; 41.06 and 48.60 mm−1; 18.60 and 23.20 µm, respectively) compared with healthy trees (20.50 and 19.63 mm−2; 31.60 and 28.30 mm−2; 17.93 and 15.30 µm, respectively). Thus, drought caused measurable changes in the anatomical characteristics of declined trees compared with healthy trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...