Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290507

RESUMO

Shrinkage and warpage of injection-molded parts can be minimized by applying microcellular foaming technology to the injection molding process. However, unlike the conventional injection molding process, the optimal conditions of the microcellular foam injection molding process are elusive because of core differences such as gas injection. Therefore, this study aims to derive process conditions to minimize the shrinkage and warpage of microcellular foam injection-molded parts made of glass fiber reinforced polyamide 6 (PA6/GF). Process factors and levels were first determined, with experiments planned accordingly. We simulated designed experiments using injection molding analysis software, and the results were analyzed using the Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM), with the ANOVA analysis being ultimately demonstrating the influence of the factors. We derived and verified the optimal combination of process factors and levels for minimizing both shrinkage and warpage using the Taguchi method and RSM. In addition, the mechanical properties and cell morphology of PA6/GF, which change with microcellular foam injection molding, were confirmed.

2.
Polymers (Basel) ; 12(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041158

RESUMO

We investigated the shape-recovery characteristics of thermoplastic polyurethane (TPU) with a microcellular foaming process (MCP). Additionally, we investigated the correlation between changes in the microstructure and the shape-recovery characteristics of the polymers. TPU was selected as the base material, and the shape-recovery characteristics were confirmed using a universal testing machine, by manufacturing dog-bone-type injection-molded specimens. TPUs are reticular polymers with both soft and hard segments. In this study, we investigated the shape-memory mechanism of foamed polymers by maximizing the shape-memory properties of these polymers through a physical foaming process. Toward this end, TPU specimens were prepared by varying the gas pressure, foaming temperature, and type of foaming gas in the batch MCP. The effects of internal structural changes were investigated. These experimental variables affected the microstructure and shape-recovery characteristics of the foamed polymer. The generated cell density changed, which affected the shape-recovery characteristics. In general, a higher cell density corresponded to a higher shape-recovery ratio.

3.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810176

RESUMO

Microcellular foamed plastic has a cell size of approximately 0.1 to 10 microns inside a foamed polymer and a cell density in the range of 109 to 1015 cells/cm3. Typically, the formation of numerous uniform cells inside a polymer can be effectively used for various purposes, such as lightweight materials, insulation and sound absorbing materials. However, it has recently been reported that these dense cell structures, which are induced through microcellular foaming, can affect the light passing through the medium, which affects the haze and permeability and causes the diffused reflection of light to achieve high diffuse reflectivity. In this study, the effects of cell size, foaming ratio and refractive index on the optical performance were investigated by applying the microcellular foaming process to three types of amorphous polymer materials. Thus, this study experimentally confirmed that the advantages of porous materials can be implemented as optical properties by providing a high specific surface area as a small and uniform cell formed by inducing a high foaming ratio through a microcellular foaming process.


Assuntos
Tamanho Celular , Poliésteres/química , Polímeros/química , Dióxido de Carbono/química , Microscopia Eletrônica de Varredura , Plásticos/química , Porosidade , Refratometria , Temperatura
4.
Polymers (Basel) ; 11(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067699

RESUMO

This study investigates the properties of a polymer-gas mixture formed through diffusion, based on the changes in the partial pressure and observed changes in the impact and tensile strengths owing to the gas dissolution. The high-pressure gas dissolves into a solid-state polymer through diffusion based on the difference in the partial pressure. This dissolved gas is present in the amorphous region within the polymeric material temporarily, which results in the polymer exhibiting different mechanical properties, while the gas remains dissolved in the polymer. In this study, the mechanical properties of amorphous polyethylene terephthalate (APET) specimens prepared by dissolving CO2 using a high-pressure vessel were investigated, and the resulting impact and tensile strengths were measured. These experiments showed that the increase in sorption rate of CO2 caused an increase in the impact strength. At 2.9% CO2 absorption, the impact strength of APET increased 956% compared to that of the reference specimen. Furthermore, the tensile strength decreased by up to 71.7% at 5.48% CO2 sorption; the stress-strain curves varied with the gas sorption rate. This phenomenon can be associated with the change in the volume caused by CO2 dissolution. When the APET absorbed more than 2.0% CO2 gas, sample volume increased. A decrease in the network density can occur when the volume is increased while maintaining constant mass. The CO2 gas in the polymer acted as a cushion in impact tests which have sorption rates above 2%. In addition to the reduction in the network density in the polymer chain, Van Der Waals forces are decreased causing a decrease in tensile strength only while CO2 is present in the APET. These observations only occur prior to CO2 desorption from the polymer.

5.
Polymers (Basel) ; 11(2)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30960344

RESUMO

This study analyzes the fundamental principles and characteristics of the microcellular foaming process (MCP) to minimize warpage in glass fiber reinforced polymer (GFRP), which is typically worse than that of a solid polymer. In order to confirm the tendency for warpage and the improvement of this phenomenon according to the glass fiber content (GFC), two factors associated with the reduction of the shrinkage difference and the non-directionalized fiber orientation were set as variables. The shrinkage was measured in the flow direction and transverse direction, and it was confirmed that the shrinkage difference between these two directions is the cause of warpage of GFRP specimens. In addition, by applying the MCP to injection molding, it was confirmed that warpage was improved by reducing the shrinkage difference. To further confirm these results, the effects of cell formation on shrinkage and fiber orientation were investigated using scanning electron microscopy, micro-CT observation, and cell morphology analysis. The micro-CT observations revealed that the fiber orientation was non-directional for the MCP. Moreover, it was determined that the mechanical and thermal properties were improved, based on measurements of the impact strength, tensile strength, flexural strength, and deflection temperature for the MCP.

6.
Materials (Basel) ; 12(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845669

RESUMO

The shrinkage of reinforced polymer composites in injection molding varies, depending on the properties of the reinforcing agent. Therefore, the study of optimal reinforcement conditions, to minimize shrinkage when talc and glass fibers (GF) (which are commonly used as reinforcements) are incorporated into polypropylene (PP), is required. In this study, we investigated the effect of reinforcement factors, such as reinforcement type, reinforcement content, and reinforcement particle size, on the shrinkage, and optimized these factors to minimize the shrinkage of the PP composites. We measured the shrinkage of injection-molded samples, and, based on the measured values, the optimal conditions were obtained through analysis of variance (ANOVA), the Taguchi method, and regression analysis. It was found that reinforcement type had the largest influence on shrinkage among the three factors, followed by reinforcement content. In contrast, the reinforcement size was not significant, compared to the other two factors. If the reinforcement size was set as an uncontrollable factor, the optimum condition for minimizing directional shrinkage was the incorporation of 20 wt % GF and that for differential shrinkage was the incorporation of 20 wt % talc. In addition, a shrinkage prediction method was proposed, in which two reinforcing agents were incorporated into PP, for the optimization of various dependent variables. The results of this study are expected to provide answers about which reinforcement agent should be selected and incorporated to minimize the shrinkage of PP composites.

7.
Polymers (Basel) ; 10(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30961316

RESUMO

Wood chips from furniture-manufacturing byproducts, which do not include adhesive or paint in the waste wood, were used for the flouring process and chemical modification of wood flour (WF). After chemical modification, the WF was mixed with polypropylene through extrusion compounding and injection-molding to prepare wood-plastic composite (WPC) injection-molded specimens for the American Society for Testing and Materials. Static contact angle measurements and stereomicroscope observations were performed. In this study, it was confirmed that the impact strength was improved by up to 55.8% and the tensile strength by up to 33.8%. The flexural modulus decreased marginally. As a result of WF chemical modification, the measured contact angle of WPC increased, which means that the wettability of the WPC specimen surface decreased. In addition, it was observed through stereomicroscopy that the whitening of the surface of the WPC specimen improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...