Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38771688

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative condition that precedes progressive and irreversible dementia; thus, predicting its progression over time is vital for clinical diagnosis and treatment. For this, numerous studies have implemented structural magnetic resonance imaging (MRI) to model AD progression, focusing on three integral aspects: 1) temporal variability; 2) incomplete observations; and 3) temporal geometric characteristics. However, many pioneer deep learning-based approaches addressing data variability and sparsity have yet to consider inherent geometrical properties sufficiently. These properties are integral to modeling as they correlate with brain region size, thickness, volume, and shape in AD progression. The ordinary differential equation-based geometric modeling method (ODE-RGRU) has recently emerged as a promising strategy for modeling time-series data by intertwining a recurrent neural network (RNN) and an ODE in Riemannian space. Despite its achievements, ODE-RGRU encounters limitations when extrapolating positive definite symmetric matrices from incomplete samples, leading to feature reverse occurrences that are particularly problematic, especially within the clinical facet. Therefore, this study proposes a novel geometric learning approach that models longitudinal MRI biomarkers and cognitive scores by combining three modules: topological space shift, ODE-RGRU, and trajectory estimation. We have also developed a training algorithm that integrates the manifold mapping with monotonicity constraints to reflect measurement transition irreversibility. We verify our proposed method's efficacy by predicting clinical labels and cognitive scores over time in regular and irregular settings. Furthermore, we thoroughly analyze our proposed framework through an ablation study.

2.
Sci Rep ; 13(1): 18588, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903879

RESUMO

Weakly supervised object localization tasks remain challenging to identify and segment an entire object rather than only discriminative parts of the object. To tackle this problem, corruption-based approaches have been devised, which involve the training of non-discriminative regions by corrupting (e.g., erasing) the input images or intermediate feature maps. However, this approach requires an additional hyperparameter, the corrupting threshold, to determine the degree of corruption and can unfavorably disrupt training. It also tends to localize object regions coarsely. In this paper, we propose a novel approach, Module of Axis-based Nexus Attention (MoANA), which helps to adaptively activate less discriminative regions along with the class-discriminative regions without an additional hyperparameter, and elaborately localizes an entire object. Specifically, MoANA consists of three mechanisms (1) triple-view attentions representation, (2) attentions expansion, and (3) features calibration mechanism. Unlike other attention-based methods that train a coarse attention map with the same values across elements in feature maps, MoANA trains fine-grained values in an attention map by assigning different attention values to each element. We validated MoANA by comparing it with various methods. We also analyzed the effect of each component in MoANA and visualized attention maps to provide insights into the calibration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...