Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(7): 1789-1801, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990157

RESUMO

BACKGROUND: ADAMTS13 is a circulating metalloprotease that cleaves von Willebrand factor (VWF) in a shear-dependent manner. ADAMTS13 is secreted as an active protease but has a long half-life, suggesting that it is resistant to circulating protease inhibitors. These zymogen-like properties indicate that ADAMTS13 exists as a latent protease that is activated by its substrate. OBJECTIVES: To investigate the mechanism of ADAMTS13 latency and resistance to metalloprotease inhibitors. METHODS: Probe the active site of ADAMTS13 and variants using alpha-2 macroglobulin (A2M), tissue inhibitors of metalloproteases (TIMPs), and Marimastat. RESULTS: ADAMTS13 and C-terminal deletion mutants are not inhibited by A2M, TIMPs, or Marimastat, but cleave FRETS-VWF73, suggesting that the metalloprotease domain is latent in the absence of substrate. Within the metalloprotease domain, mutating the gatekeeper triad (R193, D217, D252) or substituting the calcium-binding (R180-R193) or the variable (G236-S263) loops with corresponding features from ADAMTS5 did not sensitize MDTCS to inhibition. However, substituting the calcium-binding loop and an extended variable loop (G236-S263) corresponding to the S1-S1' pockets with those from ADAMTS5, resulted in MDTCS-GVC5 inhibition by Marimastat, but not by A2M or TIMP3. Substituting the MD domains of ADAMTS5 into full-length ADAMTS13 resulted in a 50-fold reduction in activity compared with the substitution into MDTCS. However, both chimeras were susceptible to inhibition, suggesting that the closed conformation does not contribute to the latency of the metalloprotease domain. CONCLUSION: The metalloprotease domain protects ADAMTS13 from inhibitors and exists in a latent state that is partially maintained by loops flanking the S1 and S1' specificity pockets.


Assuntos
Proteínas ADAM , Fator de von Willebrand , Humanos , Fator de von Willebrand/química , Proteínas ADAM/genética , Proteínas ADAM/química , Cálcio , Ácidos Hidroxâmicos/farmacologia , Proteína ADAMTS13/genética
2.
Shock ; 59(4): 666-672, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852972

RESUMO

ABSTRACT: Introduction: Cell-free DNA (CFDNA) has emerged as a prognostic biomarker in patients with sepsis. Circulating CFDNA is hypothesized to be associated with histones in the form of nucleosomes. In vitro, DNA activates coagulation and inhibits fibrinolysis, whereas histones activate platelets and are cytotoxic to endothelial cells. Previous studies have targeted CFDNA or histones in animal models of sepsis using DNase I or heparins, respectively, which has reduced inflammatory and thrombosis markers, thereby improving survival. In this study, we explored the possibility that the combination of DNase I and a low-molecular weight heparin (LMWH) may be a better therapeutic approach than monotherapy in a murine model of abdominal sepsis. Methods: C57Bl/6 mice (8-12 weeks old, both sexes) were subjected to either cecal ligation and puncture or sham surgery. Mice were given antibiotics, fluids, and either saline, DNase I (intraperitoneally, 20 mg/kg/8 h), LMWH (dalteparin, subcutaneously 500 IU/kg/12 h), or a combination of both (n = 12-31). Mice were monitored over 72 h for survival. Organs and blood were harvested for analysis. Levels of LMWH, CFDNA, IL-6, citrullinated histone-H3, thrombin-antithrombin complexes, and protein C were measured in plasma. Results: Administration of either DNase I (81.8%) or LMWH (83.3%, prophylactic range of 0.12 ± 0.07 IU/mL achieved) improved the survival of septic mice compared with saline- (38.7%) and combination-treated mice (48.8%, P < 0.05). Combination-treated mice also showed a small but insignificant improvement in survival compared with saline-treated cecal ligation and puncture mice. Monotherapies may be improving survival by reducing blood bacterial loads, citrullinated histone-H3, and thrombin-antithrombin complexes, and improving protein C levels. Conclusions: Compared with saline- and combination-treated mice, administration of monotherapies to septic mice improved survival. These findings suggest that there may be a negative drug-drug interaction between DNase I and LMWH when DNase I is administered intraperitoneally in a murine model of polymicrobial abdominal sepsis.


Assuntos
Infecções Intra-Abdominais , Sepse , Masculino , Feminino , Camundongos , Animais , Heparina de Baixo Peso Molecular/uso terapêutico , Histonas , Proteína C/metabolismo , Desoxirribonuclease I/uso terapêutico , Trombina/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Sepse/tratamento farmacológico , Sepse/metabolismo , Antitrombinas/uso terapêutico , Camundongos Endogâmicos C57BL
3.
J Thromb Haemost ; 20(6): 1485-1495, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35313081

RESUMO

BACKGROUND: Extracellular histones exert cytotoxic and procoagulant effects which contribute to immunothrombosis in vascular diseases such as sepsis. Heparin has been shown to neutralize the pathologic effects of histones in vitro and in animal models. OBJECTIVES: To compare the effectiveness of unfractionated heparin (UFH), low-molecularweight heparin (LMWH), Vasoflux (lacks anticoagulant activity), and fondaparinux in neutralizing the cytotoxic and procoagulant activities of histones METHODS: Binding affinities between heparin variants and histone subunits were determined by Bio-layer Interferometry. The ability of heparin variants to diminish the cytotoxic and procoagulant effects of histones was studied by treating endothelial cells or monocytic THP-1 cells with histones ± heparin variants. RESULTS: Unfractionated heparin, LMWH, and Vasoflux bind histone subunits with high affinities (Kd <1 pM-66.7 nM) whereas fondaparinux exhibited a low affinity (Kd of 3.06 µM-81.1 mM). UFH, LMWH, and Vasoflux neutralize histone-mediated cytotoxicity as well as monocytic procoagulant activity (as assessed by cell surface tissue factor and phosphatidylserine). In contrast, fondaparinux has no effect on these activities. All four heparin variants reverse histone-mediated impairment of APC generation in a dose-dependent manner. CONCLUSIONS: The ability of heparin to neutralize the cytotoxic and procoagulant effects of histones require heparin fragments >1.7 kDa and is independent of the antithrombin-binding pentasaccharide. In contrast, the ability of heparin to neutralize histone-mediated impairment of APC generation is independent of size and anticoagulant activity. These findings suggest that heparin variants may have differential therapeutic potential in vascular diseases associated with elevated levels of histones.


Assuntos
Heparina , Doenças Vasculares , Animais , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia , Células Endoteliais/metabolismo , Fondaparinux , Heparina/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Histonas/farmacologia , Humanos
4.
Shock ; 56(6): 975-987, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34033618

RESUMO

Background: Excessive production of neutrophil extracellular traps (NETs) in sepsis contributes to vascular occlusion by acting as a scaffold and stimulus for thrombus formation. Removal of extracellular DNA, the major structural component of NETs, by DNase I may reduce host injury. Objectives: (1) To determine how heparin variants (unfractionated heparin, enoxaparin, Vasoflux, and fondaparinux) affect DNase I activity, (2) to measure temporal changes in circulating DNA and DNase I in septic patients. Methods: DNA­histone complexes were treated with DNase I ± heparin variants and visualized via agarose gels. We compared the ability of DNase I ± heparin variants to digest NETs released by phorbol 12-myristate 13-acetate-stimulated neutrophils versus DNA­histone complexes released by necrotic HEK293 cells. Plasma DNA and DNase I levels were measured longitudinally in 76 septic patients. Results: Heparin enhances DNase I-mediated digestion of DNA­histone complexes in a size-dependent manner that does not require the antithrombin-binding region. In contrast, DNase I alone was able to degrade the DNA­histone component of NETs presumably due to peptidylarginine deiminase 4 (PAD4)-mediated histone citrullination that weakens DNA­histone interactions. In purified systems, PAD4 treatment of DNA­histone complexes enhanced the ability of DNase I to degrade histone-bound DNA. In septic patients, endogenous DNase I levels remained persistently low over 28 days, and there were no significant correlations between DNA and DNase I levels. Conclusion: Heparin enhances DNA-mediated digestion of DNA­histone complexes in a size-dependent manner that is independent of its anticoagulant properties. Citrullination of histones by PAD4 renders DNA­histone complexes susceptible to DNase I digestion. Endogenous DNase I levels are persistently decreased in septic patients, which supports the potential utility of DNase I as a therapy for sepsis.


Assuntos
Desoxirribonuclease I/sangue , Heparina/farmacologia , Proteína-Arginina Desiminase do Tipo 4/farmacologia , Sepse/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Intensive Care Med Exp ; 9(1): 14, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33738642

RESUMO

Despite decades of preclinical research, no experimentally derived therapies for sepsis have been successfully adopted into routine clinical practice. Factors that contribute to this crisis of translation include poor representation by preclinical models of the complex human condition of sepsis, bias in preclinical studies, as well as limitations of single-laboratory methodology. To overcome some of these shortcomings, multicentre preclinical studies-defined as a research experiment conducted in two or more research laboratories with a common protocol and analysis-are expected to maximize transparency, improve reproducibility, and enhance generalizability. The ultimate objective is to increase the efficiency and efficacy of bench-to-bedside translation for preclinical sepsis research and improve outcomes for patients with life-threatening infection. To this end, we organized the first meeting of the National Preclinical Sepsis Platform (NPSP). This multicentre preclinical  research collaboration of Canadian sepsis researchers and stakeholders was established to study the pathophysiology of sepsis and accelerate movement of promising therapeutics into early phase clinical trials. Integrated knowledge translation and shared decision-making were emphasized to ensure the goals of the platform align with clinical researchers and patient partners. 29 participants from 10 independent labs attended and discussed four main topics: (1) objectives of the platform; (2) animal models of sepsis; (3) multicentre methodology and (4) outcomes for evaluation. A PIRO model (predisposition, insult, response, organ dysfunction) for experimental design was proposed to strengthen linkages with interdisciplinary researchers and key stakeholders. This platform represents an important resource for maximizing translational impact of preclinical sepsis research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...