Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(17): e202400780, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38407458

RESUMO

A diradical/biradical character of organic derivatives is one of the key aspects of contemporary research focusing on the fundamental studies followed by potential applicability relying on the unique optical, electronic, or magnetic properties assigned to unpaired electrons. A precise involvement of two p-phenylenes into a cyclophane-like conjugated, diatropic system creates a flexible molecule with the two different characters of both subunits (benzene and quinone) imprinting into the structure a Kekulé delocalized system. A dynamic of both carbocyclic subunits, and their mutual interaction generates a singlet open-shell state (J=-1.25 kcal/mol) as documented spectroscopically (NMR and EPR). The extended theoretical analysis has proved a correlation between dihedral angle and the diradicaloid character that shifts from a closed-shell singlet to an open-shell state, eventually showing the y0=0.86 for 78 degrees and ΔEST=-0.34 kcal/mol.

2.
Front Chem ; 10: 880884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601550

RESUMO

As an efficient and durable engine, a diesel engine has a broad application. However, soot particles (PM) and nitrogen oxides (NOx) coming from diesel engines are the main causes of air pollution, so it is necessary to design and prepare an effective catalyst for the simultaneous elimination of PM and NOx. In this work, a novel 3DOM ZrTiO4 support and a series of WxCeMnOδ/3DOM ZrTiO4 catalysts (where x indicates the wt% of W) were designed and fabricated by the colloidal crystal template technique. Among the as-prepared catalysts, the W1CeMnOδ/3DOM ZrTiO4 catalyst exhibits the highest NO conversion rate (52%) at the temperature of maximum CO2 concentration (474°C) and achieves 90% NO conversion in the temperature range of 250-396°C. The excellent catalytic performance is associated with the macroporous structure, abundant oxygen vacancies, sufficient acid sites, and the synergistic effect among the active components. The possible reaction mechanisms of WxCeMnOδ/3DOM ZrTiO4 catalysts were also discussed based on the characterization results.

3.
Chemistry ; 27(68): 17159-17180, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34751471

RESUMO

NH3 temperature-programmed desorption (NH3 -TPD) is frequently used for probing the nature of the active sites in CuSSZ-13 zeolite for selective catalytic reduction (SCR) of NOx . Herein, we propose an interpretation of NH3 -TPD results, which takes into account the temperature-induced dynamics of NH3 interaction with the active centers. It is based on a comprehensive DFT/GGA+D and first-principles thermodynamic (FPT) modeling of NH3 adsorption on single Cu2+ , Cu+ , [CuOH]+ centers, dimeric [Cu-O-Cu]2+ , [Cu-O2 2- -Cu]2 species, segregated CuO nanocrystals and Brønsted acid sites (BAS). Theoretical TPD profiles are compared with the experimental data measured for samples of various Si/Al ratios and distribution of Al within the zeolite framework. Copper reduction, its relocation, followed by the intrazeolite olation/oxolation processes, which are concomitant with NH3 desorption, were revealed by electron paramagnetic resonance (EPR) and IR. DFT/FPT results show that the peaks in the desorption profiles cannot be assigned univocally to the particular Cu and BAS centers, since the observed low-, medium- and high-temperature desorption bands have contributions coming from several species, which dynamically change their speciation and redox states during NH3 -TPD experiment. Thus, a rigorous interpretation of the NH3 -TPD profiles of CuSSZ-13 in terms of the strength and concentration of the active centers of a particular type is problematic. Nonetheless, useful connections for molecular interpretation of TPD profiles can be established between the individual component peaks and the corresponding ensembles of the adsorption centers.

4.
ChemSusChem ; 14(18): 3887-3894, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289248

RESUMO

Solution-based syntheses are omnipresent in chemistry but are often associated with obvious disadvantages, and the search for new mild and green synthetic methods continues to be a hot topic. Here, comparative studies in four different reaction media were conducted, that is, the solid-state mechano- and slow-chemistry synthesis, melted phase, and solution protocols, and the impact of the employed solvent-free solid-state versus liquid-phase synthetic approaches was highlighted on a pool of products. A moderately exothermic model reaction system was chosen based on bis(pentafluorophenyl)zinc, (C6 F5 )2 Zn, and 2,2,6,6-tetramethylpiperidinyl oxide (TEMPO) as a stable nitroxyl radical, anticipating that these reagents may offer a unique landscape for addressing kinetic and thermodynamic aspects of wet and solvent-free solid-state processes. In a toluene solution two distinct paramagnetic Lewis acid-base adducts (C6 F5 )2 Zn(η1 -TEMPO) (1) and (C6 F5 )2 Zn(η1 -TEMPO)2 (2) equilibrated, but only 2 was affordable by crystallization. In turn, crystallization from the melt was the only method yielding single crystals of 1. Moreover, the solid-state approaches were stoichiometry sensitive and allowed for the selective synthesis of both adducts by simple stoichiometric control over the substrates. Density functional theory (DFT) calculations were carried out to examine selected structural and thermodynamic features of the adducts 1 and 2. Compound 2 is a unique non-redox active metal complex supported by two nitroxide radicals, and the magnetic studies revealed weak-to-moderate intramolecular antiferromagnetic interactions between the two coordinated TEMPO molecules.

5.
Materials (Basel) ; 14(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572133

RESUMO

One of the practical efforts in the development of oxygen reduction reaction (ORR) catalysts applicable to fuel cells and metal-air batteries is focused on reducing the cost of the catalysts production. Herein, we have examined the ORR performance of cheap, non-noble metal based catalysts comprised of nanosized mixed Fe-Co spinels deposited on N,S-doped mesoporous carbon support (N,S-MPC). The effect of the chemical and phase composition of the active phase on the selectivity of catalysts in the ORR process in alkaline media was elucidated by changing the iron content. The synthesized materials were thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy (RS). Detailed S/TEM/EDX and Raman analysis of the phase composition of the synthesized ORR catalysts revealed that the dominant mixed iron-cobalt spinel is accompanied by minor fractions of bare cobalt and highly dispersed spurious iron oxides (Fe2O3 and Fe3O4). The contribution of individual phases and their degree of agglomeration on the carbon support directly influence the selectivity of the obtained catalysts. It was found that the mixed iron-cobalt spinel single phase gives rise to significant improvement of the catalyst selectivity towards the desired 4e- reaction pathway, in comparison to the reference bare cobalt spinel, whereas spurious iron oxides play a negative role for the catalyst selectivity.

6.
J Phys Condens Matter ; 31(40): 404001, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226702

RESUMO

DFT/D + U and density functional based tight binding (DFTB) molecular modeling was used to investigate the role of the structural, electronic and optical properties of reduced graphene oxide surface (r-GO), hybridized with hydrated TiO2 moieties of various size, ranging from small molecular Ti2O4 clusters into extended Ti43O86 rutile type nanocrystals of ~5 nm diameter. The calculated adhesion energies, varying from -5.048 eV (r-GO|Ti2O4), -12.159 eV (r-GO|Ti5O10), -18.499 eV (r-GO|Ti15O30) to -42.484 eV (r-GO|Ti43O86), indicate high stability of these composites. It was shown that electronic interactions at the r-GO|(1 1 0)TiO2 interface give rise to net charge flow from the r-GO substrate towards the TiO2 moieties, analyzed in terms of the partial charge density 3D plots and an interfacial dipole moment formation. The DOS structure of the composites was calculated by means of the time dependent DFTB approach, and the position and composition of the VB and CB edges, along with the presence of weak mid-gap 2p  C states originating from the intact graphene-like patches in the r-GO substrate were discussed in detail in the context of conceivable photocatalytic activity of the composites. The constructed band alignment diagram implies formation of the staggered type II scheme, with the electric field offset that is sensitive to the titania cluster size. In the case of the nano-reticular TiO2, where only a fraction of the Ti atoms is engaged in the Ti-O-C linkers formation, recombination of the photogenerated charges is inhibited owing to favorable spatial separation effect. For small molecular TiO2 clusters with all Ti cations anchored to the r-GO layer fast cross-relaxation quenches the beneficial interfacial charge separation effect, since the strong hybridization of the oxygen and carbon states provides a convenient pathway for the efficient electronic coupling between the CB edge states of r-GO and the VB edge states of the TiO2 moieties. A phenomenological model of the molecular r-GO|Ti2O4 and the reticular r-GO|Ti43O86 composites was constructed in account for different photocatalytic behavior of both junctions.

7.
Chemistry ; 24(16): 4033-4042, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29178547

RESUMO

The unique physicochemical properties and biocompatibility of zinc oxide nanocrystals (ZnO NCs) are strongly dependent on the nanocrystal/ligand interface, which is largely determined by synthetic procedures. Stable ZnO NCs coated with a densely packed shell of 2-(2-methoxyethoxy)acetate ligands, which act as miniPEG prototypes, with average core size and hydrodynamic diameter of 4-5 and about 12 nm, respectively, were prepared by an organometallic self-supporting approach, fully characterized, and used as a model system for biological studies. The ZnO NCs from the one-pot, self-supporting organometallic procedure exhibit unique physicochemical properties such as relatively high quantum yield (up to 28 %), ultralong photoluminescence decay (up to 2.1 µs), and EPR silence under standard conditions. The cytotoxicity of the resulting ZnO NCs toward normal (MRC-5) and cancer (A549) human lung cell lines was tested by MTT assay, which demonstrated that these brightly luminescent, quantum-sized ZnO NCs have a low negative impact on mammalian cell lines. These results substantiate that the self-supporting organometallic approach is a highly promising method to obtain high-quality, nontoxic, ligand-coated ZnO NCs with prospective biomedical applications.


Assuntos
Nanopartículas Metálicas/química , Óxido de Zinco/toxicidade , Animais , Humanos , Ligantes , Luminescência , Pulmão/citologia , Pulmão/efeitos dos fármacos , Estudos Prospectivos , Óxido de Zinco/química
8.
Chem Commun (Camb) ; 51(56): 11276-9, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26083792

RESUMO

Based on scanning tunneling microscopy experiments, we show that the covalent coupling of aryl halide monomers on the rutile TiO2(011)-(2 × 1) surface is controlled by the density of surface hydroxyl groups. The efficiency of the polymerization reaction depends on the level of surface hydroxylation, but the presence of hydroxyl groups is also essential for the reaction to occur.

9.
J Am Chem Soc ; 135(41): 15467-78, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24044734

RESUMO

Interaction of tetracoordinated nickel(I) centers generated inside the channels of ZSM-5 zeolite with carbon monoxide ((12,13)CO, pCO < 1 Torr) led to the formation of T-shaped, top-on monocarbonyl adducts with a unique trigonal nickel core, supported by two oxygen donor ligands. The mechanism of the formation of the {Ni(I)-CO}ZSM-5 species was accounted for by a quantitative molecular orbital correlation diagram of CO ligation. Detailed electronic and magnetic structure of this adduct was obtained from comprehensive DFT calculations, validated by quantitative reproduction of its continuous wave electron paramagnetic resonance (CW-EPR), hyperfine sublevel correlation (HYSCORE), and IR fingerprints, using relativistic Pauli and ZORA-SOMF/B3LYP methods. Molecular analysis of the stretching frequency, νCO = 2109 cm(-1), g and A((13)C) tensors (g(xx) = 2.018, g(yy) = 2.380, g(zz) = 2.436, A(xx) = +1.0 ± 0.3 MHz, A(yy) = -3.6 ± 0.9 MHz, A(zz) = -1.6 ± 0.3 MHz) and Q((27)Al) parameters (e(2)Qq/h = -13 MHz and η = 0.8) supported by quantum chemical modeling revealed that the Ni-CO bond results from the π overlap between the low-laying π(2p) CO states with the 3d(xz) and 3d(yz) orbitals, with a small σ contribution due to the overlap of σ(2p+2s) orbital and a protruding lobe of the in-plane 3d(xz) orbital. Two types of orbital channels (associated with the σ and π overlap) of the electron and spin density flows within the {Ni(I)-CO} unit were identified. A bathochromic shift of the νCO stretching vibration was accounted for by resolving quantitatively the separate contributions due to the σ donation and π back-donation, whereas the (13)C hyperfine coupling was rationalized by incongruent α and ß spin flows via the σ and π channels. As a result the very nature of the carbon-metal bond in the Ni(I)-CO adduct and the molecular backbone of the corresponding spectroscopic parameters were revealed with unprecedented accuracy.

11.
ACS Nano ; 6(10): 8536-45, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22970745

RESUMO

Adsorption and self-assembly of large π-conjugated 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on rutile TiO(2)(110) surface have been investigated using a combination of high-resolution scanning tunneling microscopy (STM), low-energy electron diffraction, and density functional theory calculations with inclusion of Grimme treatment of the dispersion forces (DFT-D). Evolution of the STM images as a function of PTCDA coverage is caused by transition of the adsorption mode from physisorbed single adspecies and meandering stripes into spontaneously ordered chemisorbed molecular assemblies. This change in the adsorption fashion is accompanied by significant bending of the intrinsically flat, yet elastic, PTCDA molecule, which allows for strong electronic coupling of the dye adspecies with the TiO(2) substrate. Extensive DFT-D modeling has revealed that adsorption is controlled by interfacial and intermolecular dispersion forces playing a dominant role in the adsorption of single PTCDA species, their self-organization into the meandering stripes, and at the monolayer coverage acting collectively to surmount the chemisorption energy barrier associated with the molecule bending. Analysis of the resulting density of states has revealed that alignment of the energy levels and strong electronic coupling at the PTCDA/TiO(2) interface are beneficial for dye sensitization purposes.


Assuntos
Anidridos/química , Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Perileno/análogos & derivados , Titânio/química , Absorção , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Perileno/química , Estresse Mecânico
12.
Phys Chem Chem Phys ; 14(7): 2203-15, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22134498

RESUMO

Interaction of a Co-BEA catalyst with individual components (NO, C(3)H(6), CO, O(2)) and mixtures simulating the real feed of the selective catalytic reduction (SCR) of nitric oxide in static and pulse experiments at variable temperatures was investigated by means of IR, EPR, and operando DRIFT spectroscopy coupled with QMS/GC analysis of the products. Speciation of cobalt active sites into Co(II), mono- and polynuclear oxo-cobalt species as well as CoO clusters was quantified by IR using CO and NO as probe molecules. The key intermediates, by-products, and final products of the SCR reaction were identified and their spectroscopic signatures ascertained. Based on the spectroscopic operando results, a concise mechanistic scheme of the selective catalytic reduction of nitric oxide by propene, triggered by a two-electron Co(II)/Co(0) redox couple, was developed. It consists of a complex network of the sequential/parallel selective reduction steps that are interlocked by the rival nonselective oxidation of the intermediates and their thermal decomposition. It has been shown that the SCR process is initiated by the chemoselective capture of NO from the reaction mixture by the cobalt active sites leading to the cobalt(II) dinitrosyls, which in the excess of oxygen are partially oxidized to surface nitrates and nitrites. N(2)O is produced by semi-decomposition of the dinitrosyl intermediates on the mononuclear centers, whereas NO(2)via NO oxidation on the polynuclear oxo-cobalt sites. Cyanide and isocyanate species, formed together with propene oxygenates in the course of the C=C bond scission, are the mechanistically pivotal reaction intermediates of C(3)H(6) interaction with the dinitrosyles and NO(3)(-)/NO(2)(-) surface species. Dinitrogen is produced by three main reaction routes involving oxidation of cyanides by NO/NO(2), reduction of dinitrosyls, nitrates, and nitrites by propene oxygenates (medium temperature range) or their reduction by carbon monoxide (high temperature range).

13.
J Am Chem Soc ; 133(49): 19931-43, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22035420

RESUMO

This article reports on the activation of dioxygen on nickel(I) dispersed inside the nanopores of the ZSM-5 zeolite, which can be regarded as a heterogeneous mimetic system (zeozyme) for Ni-bearing enzymes. The side-on η(2)-coordination of the resulting nickel-bound superoxo adduct was ascertained by detailed analysis of the EPR spectra of both (16)O(2) and (17)O(2) species supported by computer simulations of the spectra and relativistic DFT calculations of the EPR signatures. Molecular analysis of the g and A((17)O) tensors (g(xx) = 2.0635, g(yy) = 2.0884, g(zz) = 2.1675; |A(xx)| ≈ 1.0 mT, |A(yy)| = 5.67 mT, |A(zz)| ≈ 1.3 mT) and quantum chemical modeling revealed an unusual electronic and magnetic structure of the observed adduct (with g(zz)(g(max)) > g(yy)(g(mid)) > g(xx)(g(min)) and the largest O-17 hyperfine splitting along the g(mid) direction) in comparison to the known homogeneous and enzymatic nickel-superoxo systems. It is best described as a mixed metalloradical with two supporting oxygen donor ligands and even triangular spin-density redistribution within the η(2)-{NiO(2)}(11) magnetophore. The semioccupied molecular orbital (SOMO) is constituted by highly covalent δ overlap between the out-of-plane 2p(π(g)*) MO of dioxygen and the 3d(x(2)(-y(2))) MO of nickel. By means of the extended transition state-natural orbitals for the chemical valence approach (ETS-NOCV), three distinct orbital channels (associated with σ, π, and δ overlap) of congruent and incongruent charge and spin density flows within the η(2)-{NiO(2)}(11) unit, contributing jointly to activation of the attached dioxygen, were identified. Their individual energetic relevance was quantified, which allowed for explaining the oxygen binding mechanism with unprecedented accuracy. The nature and structure sensitivity of the g tensor was rationalized in terms of the contributions due to the magnetic field-induced couplings of the relevant molecular orbitals that control the g-tensor anisotropy. The calculated O-17 hyperfine coupling constants correspond well with the experimental parameters, supporting assignment of the adduct. To the best of our knowledge, the η(2)-{NiO(2)}(11) superoxo adducts have not been observed yet for digonal mononuclear nickel(I) centers supported by oxygen donor ligands.

14.
Appl Magn Reson ; 40(4): 471-479, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21909192

RESUMO

Molecular structures of the isolated tetrahedral oxovanadium(IV) and bridged µ-oxo-divanadium(IV) complexes hosted by the clusters mimicking surfaces of amorphous silica-based materials were investigated using density functional theory (DFT) calculations. Principal values of the g and A tensors for the monomer vanadyl species were obtained using the coupled-perturbed DFT level of theory and the spin-orbit mean-field approximation (SOMF). Magnetic exchange interaction for the µ-oxo bridged vanadium(IV) dimer was investigated within the broken symmetry approach. An antiferromagnetic coupling of the individual magnetic moments of the vanadium(IV) centers in the [VO-O-VO](2+) bridges was revealed and discussed in detail. The coupling explains pronounced decrease of the electron paramagnetic resonance signal (EPR) intensity, observed for the reduced VO(x)/SiO(2) samples with the increasing coverage of vanadia, in terms of transformation of the paramagnetic monomer species into the dimers with S = 0 ground state.

15.
J Phys Chem A ; 115(11): 2316-24, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21351791

RESUMO

The spin ground state of the core ion and structure of the bis(2,4-acetylacetonate)cobalt(II) model complex and its synthetic aqua and ethanol derivatives, Co(acac)(2)L(n), (L = EtOH, H(2)O), were examined by means of density functional theory (DFT) calculations supported by electron paramagnetic resonance (EPR) measurements. Geometry optimizations were carried out for low-spin (doublet) and high-spin (quartet) states. For the Co(acac)(2) complex two possible conformations, a square-planar and a tetrahedral one, were taken into account. For all structures relative energies were calculated with both "pure" and hybrid functionals. The calculated data were complemented with the results of the EPR investigations carried out at liquid helium temperature, allowing for definite assignment of the high-spin state for the Co(acac)(2)(EtOH)(2) complex. However, because of the unresolved spectral features, only effective g-values could be assessed, whereas the zero-field splitting parameters (ZFS) were calculated by means of the spin-orbit mean field (SOMF) relativistic DFT method for which direct spin-spin (SS) and spin-orbit coupling (SOC) contributions were quantified.

16.
Phys Chem Chem Phys ; 12(36): 10933-41, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20657948

RESUMO

Continuous wave (CW) and pulse electron paramagnetic resonance in a variant of hyperfine sublevel correlation spectroscopy (HYSCORE) were used for obtaining structural information concerning speciation and local environment of alien Cu(2+) and native O(2)(-) ions encaged in copper doped nanoporous 12CaO.7Al(2)O(3) (mayenite). The samples were prepared by a solid-state reaction and characterized by means of XRD, SEM, and Raman techniques. X-Band CW-EPR spectra showed that three different Cu(2+) species together with paramagnetic extraframework O(2)(-) anions were present in the mayenite sample, whereas extraframework OH(-) anions were revealed by Raman spectroscopy. (27)Al HYSCORE provided evidence for the interaction of Cu(2+) ions with the mayenite framework. Superhyperfine interaction of the Cu(2+) ions with proximal (d(Cu-OH) = 2.4 A) and distal (d(Cu-OH) = 5.0 A) OH(-) anions, located in the same and the nearby cage, respectively, was resolved by means of (1)H HYSCORE spectra. A different situation held for the encaged O(2)(-) radicals found to be sitting on the Ca(2+) ions. They exhibited only a weak superhyperfine interaction of 1 MHz with the (27)Al(3+) framework ions.

18.
J Phys Chem A ; 112(47): 12208-19, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18986126

RESUMO

Relativistic calculations within the spin-orbit mean-field (SOMF) approximation, the zero-order regular approximation (ZORA), and the scalar relativistic method based on the Pauli Hamiltonian were performed for the prediction and interpretation of the electronic g tensor and (13)C hyperfine tensor for a set of model polycarbonyl nickel(I) complexes with aqua or hydroxy coligands. They exhibit extensive similarities with heterogeneous [Ni(I)(CO)(n)]-surface complexes produced upon adsorption of carbon monoxide on Ni(I) ions grafted on silica or inside the zeolite channels. Benchmark calculations showing the influence of the exchange-correlation functional on the g tensor were carried out for well-defined nickel(I) complexes of known structure. On this basis, the SOMF-B3LYP scheme was chosen for calculations of the g tensor, and the obtained results were in satisfactory agreement with literature EPR data found for the [Ni(I)(CO)(n)]/SiO(2) system. The calculated g and A((13)C) tensors allowed polycarbonyl complexes of various stereochemistries to be distinguished. The nature of the Deltag(ii) shifts was assessed in terms of the molecular orbital contributions due to the magnetic-field-induced couplings and their structure sensitivity. The noncoincidence of g and (13)C hyperfine principal axes and their orientation with respect to the molecular framework was also examined. The ability of DFT calculations to follow consistently variations of the EPR parameters induced by stereochemical changes around the Ni(I) center provides an invaluable reference for the interpretation of experimental results.


Assuntos
Níquel/química , Compostos Organometálicos/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Dióxido de Silício/química , Propriedades de Superfície
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 69(5): 1337-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18053760

RESUMO

The research was focused on synthesis of proton conductive, easily degradable polymer membranes, which can be used as a model system to verify the efficiency of transition metal ions (TMI) in prevention of polymer degradation. Two polymers composed of 2-hydroxyethyl methacrylate (HEMA), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS), and styrenesulfonic acid (SS) were synthesized. The copolymers were characterized by gel permeation chromatography (GPC), elementary analysis, and FTIR and fluorescence spectroscopies. The results allowed determination of weight-average molecular weight and the copolymer composition. The protons of sulfonic groups were substituted by paramagnetic transition metal ions of various spin states (Cr(3+), S=3/2 and Mn(2+), S=5/2) with the loading varying from 0.5 up to 10 mol%. The effectiveness of spin catalysis was checked by EPR. The results obtained indicate enhancement of polymer stability in the presence of Mn(2+).


Assuntos
Fontes de Energia Elétrica , Membranas Artificiais , Polímeros/química , Acrilamidas/química , Alcanossulfonatos/química , Cátions/química , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Polarização de Fluorescência , Metacrilatos/química , Polímeros/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Ácidos Sulfônicos/química , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...