Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
JTCVS Open ; 18: 306-321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690408

RESUMO

Objective: Previous studies have demonstrated synergistic antitumor effects of angiotensin system inhibition (ASI) combined with cisplatin therapy in pancreatic cancer. This study examines whether or not synergistic antitumor effects occur with combination ASI and cisplatin treatment in lung cancer, and whether or not ASI-induced changes in epithelial-mesenchymal transition play a role in the mechanism of this antitumor phenomenon. Methods: A set of lung cancer cell lines representing a spectrum of epithelial to mesenchymal phenotypes were identified and characterized. Response of epithelial-mesenchymal transition markers to losartan was characterized. Cell culture models of lung cancer were next treated with losartan, cisplatin, or combination of both. Markers of epithelial-mesenchymal transition or surrogates of other signaling pathways (AKT, Stat3, and programmed death-ligand), and cell viability were quantified. Findings were confirmed in both allogenic and syngeneic in vivo murine flank tumor models. Results: Losartan treatment significantly increased E-cadherin and reduced vimentin in human lung cancer cell lines. Combination treatment with losartan and cisplatin enhanced epithelial markers, reduced mesenchymal markers, inhibited promesenchymal signaling mediators, and reduced cell viability. Findings were confirmed in vivo in a murine flank tumor model with transition from mesenchymal to epithelial phenotype and reduced tumor size following combination losartan and cisplatin treatment. Conclusions: Combination losartan and cisplatin treatment attenuates the epithelial-mesenchymal transition pathway and enhances the cytotoxic effect of chemotherapy with in vitro and in vivo models of non-small cell lung cancer. This study suggests an important role for ASI therapy in the treatment of lung cancer.

2.
FASEB J ; 38(8): e23585, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661043

RESUMO

Fractional laser ablation is a technique developed in dermatology to induce remodeling of skin scars by creating a dense pattern of microinjuries. Despite remarkable clinical results, this technique has yet to be tested for scars in other tissues. As a first step toward determining the suitability of this technique, we aimed to (1) characterize the response to microinjuries in the healthy and cirrhotic liver, and (2) determine the underlying cause for any differences in response. Healthy and cirrhotic rats were treated with a fractional laser then euthanized from 0 h up to 14 days after treatment. Differential expression was assessed using RNAseq with a difference-in-differences model. Spatial maps of tissue oxygenation were acquired with hyperspectral imaging and disruptions in blood supply were assessed with tomato lectin perfusion. Healthy rats showed little damage beyond the initial microinjury and healed completely by 7 days without scarring. In cirrhotic rats, hepatocytes surrounding microinjury sites died 4-6 h after ablation, resulting in enlarged and heterogeneous zones of cell death. Hepatocytes near blood vessels were spared, particularly near the highly vascularized septa. Gene sets related to ischemia and angiogenesis were enriched at 4 h. Laser-treated regions had reduced oxygen saturation and broadly disrupted perfusion of nodule microvasculature, which matched the zones of cell death. Our results demonstrate that the cirrhotic liver has an exacerbated response to microinjuries and increased susceptibility to ischemia from microvascular damage, likely related to the vascular derangements that occur during cirrhosis development. Modifications to the fractional laser tool, such as using a femtosecond laser or reducing the spot size, may be able to prevent large disruptions of perfusion and enable further development of a laser-induced microinjury treatment for cirrhosis.


Assuntos
Isquemia , Cirrose Hepática , Animais , Ratos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Isquemia/metabolismo , Isquemia/patologia , Fígado/metabolismo , Fígado/patologia , Terapia a Laser/métodos , Ratos Sprague-Dawley , Hepatócitos/metabolismo
3.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961334

RESUMO

Background: Precision-Cut Liver Slices (PCLS) are an ex vivo culture model developed to study hepatic drug metabolism. One of the main benefits of this model is that it retains the structure and cellular composition of the native liver. PCLS also represents a potential model system to study liver fibrosis in a setting that more closely approximates in vivo pathology than in vitro methods. The aim of this study was to assess whether responses to antifibrotic interventions can be detected and quantified with PCLS. Methods: PCLS of 250 µm thickness were prepared from four different murine fibrotic liver models: choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), thioacetamide (TAA), diethylnitrosamine (DEN), and carbon tetrachloride (CCl4). PCLS were treated with 5 µM Erlotinib for 72 hours. Histology and gene expression were then compared with in vivo murine experiments and TGF-ß1 activated hepatic stellate cells (HSCs). These types of PCLS characterization were also evaluated in PCLS from human cirrhotic liver. Results: PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGFR inhibitor significantly inhibited the expression of profibrogenic genes Il6, Col1a1 and Timp1 in PCLS from CDAHFD-induced cirrhotic mice, and Il6, Col1a1 and Tgfb1 in PCLS from TAA-induced cirrhotic rats. Erlotinib treatment of PCLS from DEN-induced cirrhotic rats inhibited the expression of Col1a1, Timp1, Tgfb1 and Il6, which was consistent with the impact of erlotinib on Col1a1 and Tgfb1 expression in in vivo DEN-induced cirrhosis. Erlotinib treatment of PCLS from CCl4-induced cirrhosis caused reduced expression of Timp1, Col1a1 and Tgfb1, which was consistent with the effect of erlotinib in in vivo CCl4-induced cirrhosis. In addition, in HSCs at PCLS from normal mice, TGF-ß1 treatment upregulated Acta2 (αSMA), while treatment with erlotinib inhibited the expression of Acta2. Similar expression results were observed in TGF-ß1 treated in vitro HSCs. Expression of MMPs and TIMPs, key regulators of fibrosis progression and regression, were also significantly altered under erlotinib treatment in PCLS. Expression changes under erlotinib treatment were also corroborated with PCLS from human cirrhosis samples. Conclusion: The responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. Similar effects were also reproduced in PCLS derived from patients with cirrhosis. PCLS is an excellent model to assess antifibrotic therapies that is aligned with the principles of Replacement, Reduction and Refinement (3Rs).

4.
JHEP Rep ; 5(10): 100850, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818152

RESUMO

Background & Aims: Many liver diseases are driven by inflammation, but imaging to non-invasively diagnose and quantify liver inflammation has been underdeveloped. The inflammatory liver microenvironment is aberrantly oxidising owing in part to reactive oxygen species generated by myeloid leucocytes. We hypothesised that magnetic resonance imaging using the oxidatively activated probe Fe-PyC3A will provide a non-invasive biomarker of liver inflammation. Methods: A mouse model of drug-induced liver injury was generated through intraperitoneal injection of a hepatoxic dose of acetaminophen. A mouse model of steatohepatitis was generated via a choline-deficient, l-amino acid defined high-fat diet (CDAHFD). Images were acquired dynamically before and after intravenous injection of Fe-PyC3A. The contrast agent gadoterate meglumine was used as a non-oxidatively activated negative control probe in mice fed CDAHFD. The (post-pre) Fe-PyC3A injection change in liver vs. muscle contrast-to-noise ratio (ΔCNR) recorded 2 min post-injection was correlated with liver function test values, histologic scoring assigned using the NASH Clinical Research Network criteria, and intrahepatic myeloid leucocyte composition determined by flow cytometry. Results: For mice receiving i.p. injections of acetaminophen, intrahepatic neutrophil composition correlated poorly with liver test values but positively and significantly with ΔCNR (r = 0.64, p <0.0001). For mice fed CDAHFD, ΔCNR generated by Fe-PyC3A in the left lobe was significantly greater in mice meeting histologic criteria strongly associated with a diagnosis NASH compared to mice where histology was consistent with likely non-NASH (p = 0.0001), whereas no differential effect was observed using gadoterate meglumine. In mice fed CDAHFD, ΔCNR did not correlate strongly with fractional composition of any specific myeloid cell subpopulation as determined by flow cytometry. Conclusions: Magnetic resonance imaging using Fe-PyC3A merits further evaluation as a non-invasive biomarker for liver inflammation. Impact and implications: Non-invasive tests to diagnose and measure liver inflammation are underdeveloped. Inflammatory cells such as neutrophils release reactive oxygen species which creates an inflammatory liver microenvironment that can drive chemical oxidation. We recently invented a new class of magnetic resonance imaging probe that is made visible to the scanner only after chemical oxidation. Here, we demonstrate how this imaging technology could be applied as a non-invasive biomarker for liver inflammation.

5.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37589185

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Assuntos
Ácido 2-Aminoadípico , Aldeídos , Camundongos , Animais , Ácido 2-Aminoadípico/química , Imageamento por Ressonância Magnética , Pulmão
6.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131719

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

7.
Proc Natl Acad Sci U S A ; 120(18): e2220036120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094132

RESUMO

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Meios de Contraste/química , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Colágeno/análise
8.
J Am Chem Soc ; 145(12): 6871-6879, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920018

RESUMO

Many forms of anemia are caused or complicated by pathologic restriction of iron (Fe). Chronic inflammation and certain genetic mutations decrease the activity of ferroportin, the only Fe-exporter protein, so that endogenously recycled or nutritionally absorbed Fe cannot be exported to the extracellular Fe carrier protein transferrin for delivery to the bone marrow. Diminished ferroportin activity renders anemia correction challenging as Fe administered intravenously or through nutritional supplementation is trafficked through the ferroportin-transferrin axis. Utilizing judicious application of coordination chemistry principles, we designed an Fe complex (Fe-BBG) with solution thermodynamics and Fe dissociation kinetics optimized to replenish the transferrin-Fe pool rapidly, directly, and with precision. Fe-BBG is unreactive under conditions designed to force redox cycling and production of reactive oxygen species. The BBG ligand has a low affinity for divalent metal ions and does not compete for binding of other endogenously present ions including Cu and Zn. Treatment with Fe-BBG confers anemia correction in a mouse model of iron-refractory iron-deficiency anemia. Repeated exposure to Fe-BBG did not cause adverse clinical chemistry changes or trigger the expression of genes related to oxidative stress or inflammation. Fe-BBG represents the first entry in a promising new class of transferrin-targeted Fe replacement drugs.


Assuntos
Anemia Ferropriva , Anemia , Animais , Camundongos , Ferro/metabolismo , Transferrina , Inflamação
9.
Expert Opin Ther Targets ; 26(11): 949-961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36527817

RESUMO

INTRODUCTION: Glioblastoma Multiforme (GBM) is one of the fatal cancers of the Central Nervous System (CNS). A variety of reasons exist for why previous immunotherapy strategies, especially Immune Checkpoint Blockers (ICBs), did not work in treating GBM patients. The cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a key immune checkpoint receptor. Its overexpression in cancer and immune cells causes tumor cell progression. CTLA-4 suppresses anti-tumor responses inside the GBM tumor-immune microenvironment. AREAS COVERED: It has been attempted to explain the immunobiology of CTLA-4 as well as its interaction with different immune cells and cancer cells that lead to GBM progression. Additionally, CTLA-4 targeting studies have been reviewed and CTLA-4 combination therapy, as a promising therapeutic target and strategy for GBM immunotherapy, is recommended. EXPERT OPINION: CTLA-4 could be a possible supplement for future cancer immunotherapies of GBM. However, many challenges remain such as the high toxicity of CTLA-4 blockers, and the unresponsiveness of most patients to immunotherapy. For the future clinical success of CTLA-4 blocker therapy, combination approaches with other targeted treatments would be a potentially effective strategy. Going forward, predictive biomarkers can be used to reduce trial timelines and increase the chance of success.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Terapia Combinada , Antígeno CTLA-4/uso terapêutico , Glioblastoma/tratamento farmacológico , Imunoterapia , Microambiente Tumoral , Antígenos B7/metabolismo
11.
Sci Transl Med ; 14(663): eabq6297, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130015

RESUMO

Liver fibrosis plays a critical role in the evolution of most chronic liver diseases and is characterized by a buildup of extracellular matrix, which can progress to cirrhosis, hepatocellular carcinoma, liver failure, or death. Now, there are no noninvasive methods available to accurately assess disease activity (fibrogenesis) to sensitively detect early onset of fibrosis or to detect early response to treatment. Here, we hypothesized that extracellular allysine aldehyde (LysAld) pairs formed by collagen oxidation during active fibrosis could be a target for assessing fibrogenesis with a molecular probe. We showed that molecular magnetic resonance imaging (MRI) using an extracellular probe targeting these LysAld pairs acts as a noninvasive biomarker of fibrogenesis and demonstrated its high sensitivity and specificity in detecting fibrogenesis in toxin- and dietary-induced mouse models, a cholestasis rat model of liver fibrogenesis, and in human fibrotic liver tissues. Quantitative molecular MRI was highly correlated with fibrogenesis markers and enabled noninvasive detection of early onset fibrosis and response to antifibrotic treatment, showing high potential for clinical translation.


Assuntos
Aldeídos , Fígado , Animais , Biomarcadores , Colágeno , Fibrose , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/patologia , Imageamento por Ressonância Magnética , Camundongos , Sondas Moleculares , Ratos
12.
Sci Adv ; 8(34): eabo2794, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36026454

RESUMO

Altered host-microbe interactions and increased intestinal permeability have been implicated in disease pathogenesis. However, the mechanisms by which intestinal microbes affect epithelial barrier integrity remain unclear. Here, we investigate the impact of bacterial metabolism of host-produced bile acid (BA) metabolites on epithelial barrier integrity. We observe that rats fed a choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) exhibit reduced intestinal abundance of host-produced conjugated BAs at early time points, coinciding with increased gut permeability. We show that in vitro, conjugated BAs protect gut epithelial monolayers from damage caused by bacterially produced unconjugated BAs through micelle formation. We then demonstrate that inhibition of bacterial BA deconjugation with a small-molecule inhibitor prevents the development of pathologic intestinal permeability and hepatic inflammation in CDAHFD-fed rats. Our study identifies a signaling-independent, physicochemical mechanism for conjugated BA-mediated protection of epithelial barrier function and suggests that rational manipulation of microbial BA metabolism could be leveraged to regulate gut barrier integrity.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Fígado , Micelas , Permeabilidade , Ratos
13.
J Am Chem Soc ; 144(36): 16553-16558, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998740

RESUMO

Liver fibrogenesis is accompanied by upregulation of lysyl oxidase enzymes, which catalyze oxidation of lysine ε-amino groups on the extracellular matrix proteins to form the aldehyde containing amino acid allysine (LysAld). Here, we describe the design and synthesis of novel manganese-based MRI probes with high signal amplification for imaging liver fibrogenesis. Rational design of a series of stable hydrazine-equipped manganese MRI probes gives Mn-2CHyd with the highest affinity and turn-on relaxivity (4-fold) upon reaction with LysAld. A dynamic PET-MRI study using [52Mn]Mn-2CHyd showed low liver uptake of the probe in healthy mice. The ability of the probe to detect liver fibrogenesis was then demonstrated in vivo in CCl4-injured mice. This study enables further development and application of manganese-based hydrazine-equipped probes for imaging liver fibrogenesis.


Assuntos
Meios de Contraste , Manganês , Animais , Meios de Contraste/química , Hidrazinas , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Manganês/química , Camundongos
14.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801591

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of death among cirrhotic patients, for which chemopreventive strategies are lacking. Recently, we developed a simple human cell-based system modeling a clinical prognostic liver signature (PLS) predicting liver disease progression and HCC risk. In a previous study, we applied our cell-based system for drug discovery and identified captopril, an approved angiotensin converting enzyme (ACE) inhibitor, as a candidate compound for HCC chemoprevention. Here, we explored ACE as a therapeutic target for HCC chemoprevention. Captopril reduced liver fibrosis and effectively prevented liver disease progression toward HCC development in a diethylnitrosamine (DEN) rat cirrhosis model and a diet-based rat model for nonalcoholic steatohepatitis-induced (NASH-induced) hepatocarcinogenesis. RNA-Seq analysis of cirrhotic rat liver tissues uncovered that captopril suppressed the expression of pathways mediating fibrogenesis, inflammation, and carcinogenesis, including epidermal growth factor receptor (EGFR) signaling. Mechanistic data in liver disease models uncovered a cross-activation of the EGFR pathway by angiotensin. Corroborating the clinical translatability of the approach, captopril significantly reversed the HCC high-risk status of the PLS in liver tissues of patients with advanced fibrosis. Captopril effectively prevents fibrotic liver disease progression toward HCC development in preclinical models and is a generic and safe candidate drug for HCC chemoprevention.


Assuntos
Captopril , Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Captopril/farmacologia , Captopril/uso terapêutico , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Quimioprevenção , Progressão da Doença , Receptores ErbB/metabolismo , Cirrose Hepática/prevenção & controle , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Peptidil Dipeptidase A/metabolismo , Ratos , Ativação Transcricional
15.
Cell Mol Gastroenterol Hepatol ; 13(5): 1483-1509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093588

RESUMO

BACKGROUND & AIMS: During liver fibrosis, tissue repair mechanisms replace necrotic tissue with highly stabilized extracellular matrix proteins. Extracellular matrix stabilization influences the speed of tissue recovery. Here, we studied the expression and function of peroxidasin (PXDN), a peroxidase that uses hydrogen peroxide to cross-link collagen IV during liver fibrosis progression and regression. METHODS: Mouse models of liver fibrosis and cirrhosis patients were analyzed for the expression of PXDN in liver and serum. Pxdn-/- and Pxdn+/+ mice were either treated with carbon tetrachloride for 6 weeks to generate toxin-induced fibrosis or fed with a choline-deficient L-amino acid-defined high-fat diet for 16 weeks to create nonalcoholic fatty liver disease fibrosis. Liver histology, quantitative real-time polymerase chain reaction, collagen content, flowcytometry and immunostaining of immune cells, RNA-sequencing, and liver function tests were analyzed. In vivo imaging of liver reactive oxygen species (ROS) was performed using a redox-active iron complex, Fe-PyC3A. RESULTS: In human and mouse cirrhotic tissue, PXDN is expressed by stellate cells and is secreted into fibrotic areas. In patients with nonalcoholic fatty liver disease, serum levels of PXDN increased significantly. In both mouse models of liver fibrosis, PXDN deficiency resulted in elevated monocyte and pro-fibrolysis macrophage recruitment into fibrotic bands and caused decreased accumulation of cross-linked collagens. In Pxdn-/- mice, collagen fibers were loosely organized, an atypical phenotype that is reversible upon macrophage depletion. Elevated ROS in Pxdn-/- livers was observed, which can result in activation of hypoxic signaling cascades and may affect signaling pathways involved in macrophage polarization such as TNF-a via NF-kB. Fibrosis resolution in Pxdn-/- mice was associated with significant decrease in collagen content and improved liver function. CONCLUSION: PXDN deficiency is associated with increased ROS levels and a hypoxic liver microenvironment that can regulate recruitment and programming of pro-resolution macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest a novel pathway that is involved in the resolution of scar tissue.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Peroxidases , Animais , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Humanos , Cirrose Hepática/patologia , Macrófagos/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Peroxidases/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Commun ; 12(1): 5525, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535664

RESUMO

Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.


Assuntos
Descoberta de Drogas , Fígado/patologia , Modelos Biológicos , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimioprevenção , Estudos de Coortes , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout , Nizatidina/farmacologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
18.
Cell Mol Gastroenterol Hepatol ; 12(4): 1297-1310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118488

RESUMO

BACKGROUND & AIMS: Patients with simple steatosis (SS) and nonalcoholic steatohepatitis can develop progressive liver fibrosis, which is associated with liver-related mortality. The mechanisms contributing to liver fibrosis development in SS, however, are poorly understood. SS is characterized by hepatocellular free fatty acid (FFA) accumulation without lobular inflammation seen in nonalcoholic steatohepatitis. Because the Hippo signaling transcriptional coactivator YAP1 (YAP) has previously been linked with nonalcoholic fatty liver disease (NAFLD)-related fibrosis, we sought to explore how hepatocyte FFAs activate a YAP-mediated profibrogenic program. METHODS: We analyzed RNA sequencing data from a GEO DataSet (accession: GSE162694) consisting of 143 patients with NAFLD. We also performed immunohistochemical, immunofluorescence, immunoblot, and quantitative reverse-transcription polymerase chain reaction analyses (qRT-PCR) in liver specimens from NAFLD subjects, from a murine dietary NAFLD model, and in FFA-treated hepatic spheroids and hepatocytes. RESULTS: YAP-target gene expression correlated with increasing fibrosis stage in NAFLD patients and was associated with fibrosis in mice fed a NAFLD-inducing diet. Hepatocyte-specific YAP deletion in the murine NAFLD model attenuated diet-induced fibrosis, suggesting a causative role of YAP in NAFLD-related fibrosis. Likewise, in hepatic spheroids composed of Huh7 hepatoma cells and primary human hepatic stellate cells, Huh7 YAP silencing reduced FFA-induced fibrogenic gene expression. Notably, inhibition of p38 mitogen-activated protein kinase could block YAP activation in FFA-treated Huh7 cells. CONCLUSIONS: These studies provide further evidence for the pathological role of YAP in NAFLD-associated fibrosis and that YAP activation in NAFLD may be driven by FFA-induced p38 MAPK activation.


Assuntos
Ácidos Graxos/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Biomarcadores , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Cirrose Hepática/patologia , Testes de Função Hepática , Masculino , Camundongos , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
19.
Nanomedicine ; 34: 102373, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667724

RESUMO

HIF-1α and STAT3 are two of the critical factors in the growth, proliferation, and metastasis of cancer cells and play a crucial role in inhibiting anti-cancer immune responses. Therefore, we used superparamagnetic iron oxide (SPION) nanoparticles (NPs) coated with thiolated chitosan (ChT) and trimethyl chitosan (TMC) and functionalized with hyaluronate (H) and TAT peptide for delivery of siRNA molecules against STAT3 and HIF-1α to cancer cells both in vivo and in vitro. The results indicated that tumor cell transfection with siRNA-encapsulated NPs robustly inhibited proliferation and migration and induced apoptosis in tumor cells. Furthermore, simultaneous silencing of HIF-1α and STAT3 significantly repressed cancer development in two different tumor types (4T1 breast cancer and CT26 colon cancer) which were associated with upregulation of cytotoxic T lymphocytes and IFN-γ secretion. The findings suggest inhibiting the HIF-1α/STAT3 axis by SPION-TMC-ChT-TAT-H NPs as an effective way to treat cancer.


Assuntos
Neoplasias da Mama/patologia , Proliferação de Células , Quitosana/química , Neoplasias do Colo/patologia , Ácido Hialurônico/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Camundongos , Camundongos Endogâmicos BALB C
20.
Sci Rep ; 11(1): 6105, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731798

RESUMO

Non-alcoholic steatohepatitis (NASH) is an increasing cause of chronic liver disease characterized by steatosis, inflammation, and fibrosis which can lead to cirrhosis, hepatocellular carcinoma, and mortality. Quantitative, noninvasive methods for characterizing the pathophysiology of NASH at both the preclinical and clinical level are sorely needed. We report here a multiparametric magnetic resonance imaging (MRI) protocol with the fibrogenesis probe Gd-Hyd to characterize fibrotic disease activity and steatosis in a common mouse model of NASH. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) to induce NASH with advanced fibrosis. Mice fed normal chow and CDAHFD underwent MRI after 2, 6, 10 and 14 weeks to measure liver T1, T2*, fat fraction, and dynamic T1-weighted Gd-Hyd enhanced imaging of the liver. Steatosis, inflammation, and fibrosis were then quantified by histology. NASH and fibrosis developed quickly in CDAHFD fed mice with strong correlation between morphometric steatosis quantification and liver fat estimated by MRI (r = 0.90). Sirius red histology and collagen quantification confirmed increasing fibrosis over time (r = 0.82). Though baseline T1 and T2* measurements did not correlate with fibrosis, Gd-Hyd signal enhancement provided a measure of the extent of active fibrotic disease progression and correlated strongly with lysyl oxidase expression. Gd-Hyd MRI accurately detects fibrogenesis in a mouse model of NASH with advanced fibrosis and can be combined with other MR measures, like fat imaging, to more accurately assess disease burden.


Assuntos
Meios de Contraste/farmacologia , Complexos de Coordenação/farmacologia , Gadolínio/farmacologia , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...