Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8475, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123550

RESUMO

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. At the onset of Xenopus neural tube folding, we observed alternation of apically constricted and apically expanded cells. This apical domain heterogeneity was accompanied by biased cell orientation along the anteroposterior axis, especially at neural plate hinges, and required planar cell polarity signaling. Vertex models suggested that dispersed isotropically constricting cells can cause the elongation of adjacent cells. Consistently, in ectoderm, cell-autonomous apical constriction was accompanied by neighbor expansion. Thus, a subset of isotropically constricting cells may initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the body axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that apical domain changes reflect planar polarity-dependent mechanical forces operating during neural folding.


Assuntos
Placa Neural , Tubo Neural , Sistema Nervoso , Ectoderma , Morfogênese
2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808688

RESUMO

Myocardin-related transcription factors (Mrtfa and Mrtfb), also known as megakaryoblastic leukemia proteins (Mkl1/MAL and Mkl2), associate with serum response factor (Srf) to regulate transcription in response to actin dynamics, however, the functions of Mrtfs in early vertebrate embryos remain largely unknown. Here we document the requirement of Mrtfs for blastopore closure at gastrulation and neural plate folding in Xenopus early embryos. Both stimulation and inhibition of Mrtf activity caused similar gross morphological phenotypes, yet the effects on F-actin distribution and cell behavior were different. Suppressing Mrtf-dependent transcription reduced overall F-actin levels and inhibited apical constriction during gastrulation and neurulation. By contrast, constitutively active Mrtf caused tricellular junction remodeling and induced apical constriction in superficial ectoderm. The underlying mechanism appeared distinct from the one utilized by known apical constriction inducers. We propose that the regulation of apical constriction is among the primary cellular responses to Mrtf. Our findings highlight a dedicated role of specific transcription factors, Mrtfs, in early morphogenetic processes.

3.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798359

RESUMO

Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. In this study, we evaluated morphology of the superficial cell layer in the Xenopus neural plate. At the stages corresponding to the onset of tissue folding, we observed the alternation of cells with apically constricting and apically expanding apical domains. The cells had a biased orientation along the anteroposterior (AP) axis. This apical domain heterogeneity required planar cell polarity (PCP) signaling and was especially pronounced at neural plate hinges. Vertex model simulations suggested that spatially dispersed isotropically constricting cells cause the elongation of their non-constricting counterparts along the AP axis. Consistent with this hypothesis, cell-autonomous induction of apical constriction in Xenopus ectoderm cells was accompanied by the expansion of adjacent non-constricting cells. Our observations indicate that a subset of isotropically constricting cells can initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the AP axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that neural folding relies on PCP-dependent transduction of mechanical signals between neuroepithelial cells.

4.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451459

RESUMO

Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.


Assuntos
Actomiosina , Ectoderma , Actomiosina/metabolismo , Animais , Ectoderma/metabolismo , Morfogênese/fisiologia , Cadeias Pesadas de Miosina , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Xenopus laevis/metabolismo
5.
Methods Mol Biol ; 2438: 97-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35147937

RESUMO

Understanding signaling processes operating in cells during development and disease requires extensive knowledge of protein interactions. Proximity-dependent biotinylation mediated by a promiscuous bacterial biotin ligase is a sensitive approach for evaluating protein interactions under physiological conditions. This technique allows for assessing protein association when conventional pull-down assays are not applicable due to high background or transient nature of the interaction. In contrast to many studies of proximity biotinylation in cultured cells, this protocol has been adapted to detect protein interactions in Xenopus embryos. Here, we apply this technique to evaluate planar cell polarity (PCP) complexes formed by Prickle3 and Vangl2, and show that Prickle3 fused to the N-terminal fragment of the biotin ligase from Aquifex aeolicus efficiently biotinylates Vangl2 in vivo. We present our step-by-step proximity biotinylation protocol that provides a reliable semiquantitative assay for protein interactions and highlights the use of Xenopus embryos as a model for biochemical studies.


Assuntos
Polaridade Celular , Proteínas , Animais , Biotinilação , Xenopus laevis
6.
Methods Mol Biol ; 2438: 147-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35147941

RESUMO

Planar cell polarity (PCP) refers to coordinated cell polarization in the plane of the tissue. Genetic studies in Drosophila identified several core PCP genes, whose products function together in a signaling pathway that regulates cell shape, epithelial tissue organization and remodeling during morphogenesis. PCP is detected by the asymmetric distribution of core PCP proteins at different borders of epithelial cells. Believed to be critical for signaling, this segregation is studied by a variety of techniques, such as direct immunostaining and imaging of fluorescent PCP protein fusions or fluorescence recovery after photobleaching (FRAP). All of the above techniques can be applied to the analysis of the Xenopus neural plate to study the dynamics of tissue polarization, making this system one of the best vertebrate PCP models. This chapter describes how to image PCP proteins in Xenopus neuroectoderm for both fixed and live samples. These robust cellular techniques will contribute to mechanistic studies of PCP in vertebrate embryos.


Assuntos
Polaridade Celular , Placa Neural , Animais , Polaridade Celular/genética , Proteínas de Membrana/metabolismo , Placa Neural/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34806749

RESUMO

The orientation of epithelial cells in the plane of the tissue, known as planar cell polarity (PCP), is regulated by interactions of asymmetrically localized PCP protein complexes. In the Xenopus neural plate, Van Gogh-like2 (Vangl2) and Prickle3 (Pk3) proteins form a complex at the anterior cell boundaries, but how this complex is regulated in vivo remains largely unknown. Here, we use proximity biotinylation and crosslinking approaches to show that Vangl2-Pk3 association is inhibited by Frizzled3 (Fz3, also known as Fzd3), a core PCP protein that is specifically expressed in the neuroectoderm and is essential for the establishment of PCP in this tissue. This inhibition required Fz3-dependent Vangl2 phosphorylaton. Consistent with our observations, the complex of Pk3 with nonphosphorylatable Vangl2 did not polarize in the neural plate. These findings provide evidence for in vivo regulation of Vangl2-Pk3 complex formation and localization by a Frizzled receptor.


Assuntos
Polaridade Celular , Receptores Frizzled , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana , Placa Neural , Proteínas de Xenopus , Animais , Fatores de Transcrição , Xenopus laevis
8.
PLoS One ; 16(10): e0259068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710136

RESUMO

Wilms tumor-1-interacting protein (Wtip) is a LIM-domain-containing adaptor that links cell junctions with actomyosin complexes and modulates actomyosin contractility and ciliogenesis in Xenopus embryos. The Wtip C-terminus with three LIM domains associates with the actin-binding protein Shroom3 and modulates Shroom3-induced apical constriction in ectoderm cells. By contrast, the N-terminal domain localizes to apical junctions in the ectoderm and basal bodies in skin multiciliated cells, but its interacting partners remain largely unknown. Targeted proximity biotinylation (TPB) using anti-GFP antibody fused to the biotin ligase BirA identified SSX2IP as a candidate protein that binds GFP-WtipN. SSX2IP, also known as Msd1 or ADIP, is a component of cell junctions, centriolar satellite protein and a targeting factor for ciliary membrane proteins. WtipN physically associated with SSX2IP and the two proteins readily formed mixed aggregates in overexpressing cells. By contrast, we observed only partial colocalization of full length Wtip and SSX2IP, suggesting that Wtip adopts a 'closed' conformation in the cell. Furthermore, the double depletion of Wtip and SSX2IP in early embryos uncovered the functional interaction of the two proteins during neural tube closure. Our results suggest that the association of SSX2IP and Wtip is essential for cell junction remodeling and morphogenetic processes that accompany neurulation. We propose that TPB can be a general approach that is applicable to other GFP-tagged proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Biotinilação , Espectrometria de Massas , Ligação Proteica , Xenopus laevis
9.
Biol Open ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34259326

RESUMO

Coordinated polarization of cells in the tissue plane, known as planar cell polarity (PCP), is associated with a signaling pathway critical for the control of morphogenetic processes. Although the segregation of PCP components to opposite cell borders is believed to play a critical role in this pathway, whether PCP derives from egg polarity or preexistent long-range gradient, or forms in response to a localized cue, remains a challenging question. Here we investigate the Xenopus neural plate, a tissue that has been previously shown to exhibit PCP. By imaging Vangl2 and Prickle3, we show that PCP is progressively acquired in the neural plate and requires a signal from the posterior region of the embryo. Tissue transplantations indicated that PCP is triggered in the neural plate by a planar cue from the dorsal blastopore lip. The PCP cue did not depend on the orientation of the graft and was distinct from neural inducers. These observations suggest that neuroectodermal PCP is not instructed by a preexisting molecular gradient but induced by a signal from the dorsal blastopore lip.


Assuntos
Polaridade Celular/fisiologia , Gástrula/embriologia , Morfogênese/fisiologia , Placa Neural/embriologia , Xenopus/embriologia , Animais , Transdução de Sinais
10.
Cold Spring Harb Protoc ; 2021(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34244349

RESUMO

The Xenopus embryo is a classical vertebrate model for molecular, cellular, and developmental biology. Despite many advantages of this organism, such as large egg size and external development, imaging of early embryonic stages is challenging because of nontransparent cytoplasm. Staining and imaging of thin tissue sections is one way to overcome this limitation. Here we describe a step-by-step protocol that combines cryosectioning of gelatin-embedded embryos with immunostaining and imaging. The purpose of this protocol is to examine various cellular and tissue markers after the manipulation of protein function. This protocol can be performed within a 2-d period and allows detection of many antigens by immunofluorescence.


Assuntos
Crioultramicrotomia , Desenvolvimento Embrionário , Animais , Embrião de Mamíferos , Embrião não Mamífero/metabolismo , Imunofluorescência , Xenopus laevis
11.
Curr Top Dev Biol ; 145: 41-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34074535

RESUMO

Planar cell polarity (PCP) refers to the coordinated polarization of cells within the plane of a tissue. PCP is a controlled by a group of conserved proteins organized in a specific signaling pathway known as the PCP pathway. A hallmark of PCP signaling is the asymmetric localization of "core" PCP protein complexes at the cell cortex, although endogenous PCP cues needed to establish this asymmetry remain unknown. While the PCP pathway was originally discovered as a mechanism directing the planar organization of Drosophila epithelial tissues, subsequent studies in Xenopus and other vertebrates demonstrated a critical role for this pathway in the regulation of actomyosin-dependent morphogenetic processes, such as neural tube closure. Large size and external development of amphibian embryos allows live cell imaging, placing Xenopus among the best models of vertebrate neurulation at the molecular, cellular and organismal level. This review describes cross-talk between core PCP proteins and actomyosin contractility that ultimately leads to tissue-scale movement during neural tube closure.


Assuntos
Actomiosina/metabolismo , Polaridade Celular , Modelos Animais , Tubo Neural/embriologia , Neurulação , Xenopus laevis/embriologia , Animais , Humanos
13.
Sci Rep ; 11(1): 13433, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183732

RESUMO

The Wnt pathway activates target genes by controlling the ß-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.


Assuntos
Padronização Corporal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Fator 3 de Transcrição/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/fisiologia , Animais , Padronização Corporal/fisiologia , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Cabeça/embriologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator 3 de Transcrição/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacologia , Xenopus laevis/embriologia
14.
iScience ; 24(6): 102520, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142034

RESUMO

Dorsoventral patterning of a vertebrate embryo critically depends on the activity of Smad1 that mediates signaling by BMP proteins, anti-dorsalizing morphogenetic protein (Admp), and their antagonists. Pinhead (Pnhd), a cystine-knot-containing secreted protein, is expressed in the ventrolateral mesoderm during Xenopus gastrulation; however, its molecular targets and signaling mechanisms have not been fully elucidated. Our mass spectrometry-based screen of the gastrula secretome identified Admp as Pnhd-associated protein. We show that Pnhd binds Admp and inhibits its ventralizing activity by reducing Smad1 phosphorylation and its transcriptional targets. Importantly, Pnhd depletion further increased phospho-Smad1 levels in the presence of Admp. Furthermore, Pnhd synergized with Chordin and a truncated BMP4 receptor in the induction of notochord markers in ectoderm cells, and Pnhd-depleted embryos displayed notochord defects. Our findings suggest that Pnhd binds and inactivates Admp to promote notochord development. We propose that the interaction between Admp and Pnhd refines Smad1 activity gradients during vertebrate gastrulation.

15.
Nat Rev Nephrol ; 17(6): 369-385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547419

RESUMO

Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.


Assuntos
Polaridade Celular/fisiologia , Nefropatias/etiologia , Rim/crescimento & desenvolvimento , Animais , Drosophila/crescimento & desenvolvimento , Humanos , Rim/embriologia , Rim/fisiologia , Nefropatias/fisiopatologia , Transdução de Sinais/fisiologia
16.
Development ; 147(17)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32859582

RESUMO

Among the three embryonic germ layers, the mesoderm plays a central role in the establishment of the vertebrate body plan. The mesoderm is specified by secreted signaling proteins from the FGF, Nodal, BMP and Wnt families. No new classes of extracellular mesoderm-inducing factors have been identified in more than two decades. Here, we show that the pinhead (pnhd) gene encodes a secreted protein that is essential for the activation of a subset of mesodermal markers in the Xenopus embryo. RNA sequencing revealed that many transcriptional targets of Pnhd are shared with those of the FGF pathway. Pnhd activity was accompanied by Erk phosphorylation and required FGF and Nodal but not Wnt signaling. We propose that during gastrulation Pnhd acts in the marginal zone to contribute to mesoderm heterogeneity via an FGF receptor-dependent positive feedback mechanism.


Assuntos
Mesoderma/embriologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , Animais , Mesoderma/citologia , RNA-Seq , Receptores de Fatores de Crescimento de Fibroblastos/genética , Fator de Crescimento Transformador beta/genética , Proteínas de Xenopus/genética , Xenopus laevis
17.
Development ; 147(10)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32366679

RESUMO

R-spondins are a family of secreted proteins that play important roles in embryonic development and cancer. R-spondins have been shown to modulate the Wnt pathway; however, their involvement in other developmental signaling processes have remained largely unstudied. Here, we describe a novel function of Rspo2 in FGF pathway regulation in vivo Overexpressed Rspo2 inhibited elongation of Xenopus ectoderm explants and Erk1 activation in response to FGF. By contrast, the constitutively active form of Mek1 stimulated Erk1 even in the presence of Rspo2, suggesting that Rspo2 functions upstream of Mek1. The observed inhibition of FGF signaling was accompanied by the downregulation of the FGF target genes tbxt/brachyury and cdx4, which mediate anterioposterior axis specification. Importantly, these target genes were upregulated in Rspo2-depleted explants. The FGF inhibitory activity was mapped to the thrombospondin type 1 region, contrasting the known function of the Furin-like domains in Wnt signaling. Further domain analysis revealed an unexpected intramolecular interaction that might control Rspo2 signaling output. We conclude that, in addition to its role in Wnt signaling, Rspo2 acts as an FGF antagonist during mesoderm formation and patterning.


Assuntos
Padronização Corporal/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Regulação para Baixo/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular , Mutagênese Sítio-Dirigida/métodos , Domínios Proteicos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Via de Sinalização Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
18.
PLoS One ; 14(5): e0216083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048885

RESUMO

The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities for Xenopus embryonic antigens. The immune nanobody library was derived from peripheral blood lymphocyte RNA obtained from a llama immunized with Xenopus gastrula homogenates. Screening this library by immunostaining of embryonic tissues with pooled periplasmic material and sib-selection led to the isolation of several monoclonal phages reactive with the cytoplasm and nuclei of gastrula cells. One antigen recognized by a group of nanobodies was identified using a reverse proteomics approach as nucleoplasmin, an abundant histone chaperone. As an alternative strategy, a semi-synthetic non-immune llama nanobody phage display library was panned on highly purified Xenopus proteins. This proof-of-principle approach isolated monoclonal nanobodies that specifically bind Nuclear distribution element-like 1 (Ndel1) in multiple immunoassays. Our results suggest that immune and non-immune phage display screens on crude and purified embryonic antigens can efficiently identify nanobodies useful to the Xenopus developmental biology community.


Assuntos
Desenvolvimento Embrionário/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Antígenos/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Proteínas do Citoesqueleto/imunologia , Gástrula , Biblioteca de Peptídeos , Antígenos Embrionários Estágio-Específicos/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Xenopus laevis/embriologia , Xenopus laevis/imunologia , Xenopus laevis/metabolismo
19.
Elife ; 72018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30256191

RESUMO

Vertebrate neural tube formation depends on the coordinated orientation of cells in the tissue known as planar cell polarity (PCP). In the Xenopus neural plate, PCP is marked by the enrichment of the conserved proteins Prickle3 and Vangl2 at anterior cell boundaries. Here we show that the apical determinant Par3 is also planar polarized in the neuroepithelium, suggesting a role for Par3 in PCP. Consistent with this hypothesis, interference with Par3 activity inhibited asymmetric distribution of PCP junctional complexes and caused neural tube defects. Importantly, Par3 physically associated with Prickle3 and promoted its apical localization, whereas overexpression of a Prickle3-binding Par3 fragment disrupted PCP in the neural plate. We also adapted proximity biotinylation assay for use in Xenopus embryos and show that Par3 functions by enhancing the formation of the anterior apical PCP complex. These findings describe a mechanistic link between the apical localization of PCP components and morphogenetic movements underlying neurulation.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular , Embrião não Mamífero/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Placa Neural/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Transporte/genética , Embrião não Mamífero/embriologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Microscopia de Fluorescência , Morfogênese , Placa Neural/embriologia , Ligação Proteica , Proteínas de Xenopus/genética , Xenopus laevis
20.
J Cell Sci ; 131(10)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661847

RESUMO

Ajuba family proteins are implicated in the assembly of cell junctions and have been reported to antagonize Hippo signaling in response to cytoskeletal tension. To assess the role of these proteins in actomyosin contractility, we examined the localization and function of Wtip, a member of the Ajuba family, in Xenopus early embryos. Targeted in vivo depletion of Wtip inhibited apical constriction in neuroepithelial cells and elicited neural tube defects. Fluorescent protein-tagged Wtip showed predominant punctate localization along the cell junctions in the epidermis and a linear junctional pattern in the neuroectoderm. In cells undergoing Shroom3-induced apical constriction, the punctate distribution was reorganized into a linear pattern. Conversely, the linear junctional pattern of Wtip in neuroectoderm changed to a more punctate distribution in cells with reduced myosin II activity. The C-terminal fragment of Wtip physically associated with Shroom3 and interfered with Shroom3 activity and neural fold formation. We therefore propose that Wtip is a tension-sensitive cytoskeletal adaptor that regulates apical constriction during vertebrate neurulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actomiosina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tubo Neural/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Actinas/genética , Actinas/metabolismo , Actomiosina/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Família Multigênica , Tubo Neural/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...