Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 10(3): 630-636, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30673244

RESUMO

Inspired by the outstanding optoelectronic properties reported for all-inorganic halide perovskite quantum dots (QDs), we have evaluated the potential of these materials toward the photocatalytic and photoelectrochemical degradation of organic compounds, taking the oxidation of 2-mercaptobenzothiazole (MBT) as a proof-of-concept. First, we determined electrochemically the energy levels of dispersions of perovskite QDs with different band gaps induced by the different ratios between halides (Br and I) and metallic cations (Pb and Sn). Then, we selected CsPbBr3 QDs to demonstrate the photocatalytic and photoelectrochemical oxidation of MBT, confirming that hole injection takes place from CsPbBr3 QDs to MBT, resulting in the total degradation of MBT as evidenced by electrospray mass spectrometry analyses. Although the stability and toxicity of these QDs are major issues to address in the near future, the results obtained in the present study open promising perspectives for the implementation of solar-driven catalytic strategies based on these fascinating materials.

2.
J Phys Chem C Nanomater Interfaces ; 122(25): 14222-14231, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29983843

RESUMO

Halide perovskites are revolutionizing the photovoltaic and optoelectronic fields with outstanding performances obtained in a remarkably short time. However, two major challenges remain: the long-term stability and the Pb content, due to its toxicity. Despite the great effort carried out to substitute the Pb by a less hazardous element, lead-free perovskite still remains more unstable than lead-containing perovskites and presents lower performance as well. In this work, we demonstrate the colloidal preparation of Cs-Pb-Sn-Br nanoparticles (NPs) where Sn is incorporated up to 18.8%. Significantly, we have demonstrated that the partial substitution of Pb by Sn does not produce a deleterious effect in their optical performance in terms of photoluminescence quantum yield (PLQY). We observed for the first time a positive effect in terms of enhancement of PLQY when Sn partially substitutes Pb in a considerable amount (i.e., higher than 5%). PLQYs as high as 73.4% have been obtained with a partial Pb replacement of 7% by Sn. We present a systematic study of the synthesis process in terms of different growth parameters (i.e., precursor concentration, time, and temperature of reaction) and how they influence the Sn incorporation and the PLQY. This high performance and long-term stability is based on a significant stabilization of Sn2+ in the NPs for several months, as determined by XPS analysis, and opens an interesting way to obtain less Pb-containing perovskite NPs with excellent optoelectronic properties.

3.
Nanoscale ; 8(12): 6271-7, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26616491

RESUMO

Intensive research on the electron transport material (ETM) has been pursued to improve the efficiency of perovskite solar cells (PSCs) and decrease their cost. More importantly, the role of the ETM layer is not yet fully understood, and research on new device architectures is still needed. Here, we report the use of three-dimensional (3D) TiO2 with a hierarchical architecture based on rutile nanorods (NR) as photoanode material for PSCs. The proposed hierarchical nanorod (HNR) films were synthesized by a two-step low temperature (180 °C) hydrothermal method, and consist of TiO2 nanorod trunks with optimal lengths of 540 nm and TiO2 nanobranches with lengths of 45 nm. Different device configurations were fabricated with TiO2 structures (compact layer, NR and HNR) and CH3NH3PbI3, using different synthetic routes, as the active material. PSCs based on HNR-CH3NH3PbI3 achieved the highest power conversion efficiency compared to PSCs with other TiO2 structures. This result can be ascribed mainly to lower charge recombination as determined by impedance spectroscopy. Furthermore, we have observed that the CH3NH3PbI3 perovskite deposited by the two-step route shows higher efficiency, surface coverage and infiltration within the structure of 3D HNR than the one-step CH3NH3PbI(3-x)Cl(x) perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...