Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 650(Pt 2): 3134-3144, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373090

RESUMO

A field experiment was conducted during 15 months to study the effects of four arbuscular mycorrhizal fungi (AMF) on the growth of Ricinus communis accession SF7. Plants were established on amended soil (vermicompost:sawdust:soil 1:1:1) severely polluted by lead-acid batteries (LAB) located at Mexico State, Mexico. Plants inoculated with Acaulospora sp., Funneliformis mosseae and Gigaspora gigantea had 100% survival in comparison to non-inoculated plants (57%). These same AMF enhanced palmitic and linoleic acids content in seeds of R. communis. Acaulospora sp. modified rhizosphere soil pH and decreased 3.5 folds Pb foliar concentrations while F. mosseae BEG25 decreased three times Pb soil availability in comparison to non-inoculated plants. Spatial changes in Pb soil availability were observed at the end of this research. No fungal effect on P, Ca, Cu foliar concentrations, soluble sugars, proline, chlorophyll or on the activity of two oxidative stress enzymes was observed. Mycorrhizal colonization from the inoculated fungi was between 40% and 60%, while colonization by native fungi was between 16% and 22%. A similar percentage of foliar total phenolic compounds was observed in non-mycorrhizal plants and those inoculated with G. gigantea and Acaulospora sp. This is the first research reporting effects of AMF on R. communis (castor bean) shrubs when grown on a LAB recycling site suggesting the use of Acaulospora sp. and F. mosseae BEG25 in phytostabilization to ameliorate Pb pollution and decreasing its ecological risk.


Assuntos
Recuperação e Remediação Ambiental , Chumbo/metabolismo , Micorrizas/metabolismo , Ricinus/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biocombustíveis , Fontes de Energia Elétrica , Poluição Ambiental/análise , México , Reciclagem
2.
Front Microbiol ; 9: 3028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581428

RESUMO

Plant surfaces are known as an important sink for various air pollutants, including particulate matter and its associated potentially toxic elements (PTE). Moreover, leaves surface or phylloplane is a habitat that harbors diverse bacterial communities (epiphytic). However, little is known about their possible functions during phytoremediation of air pollutants like PTE. The study of leaf epiphytic bacteria of plants colonizing mine residues (MR) containing PTE is thus a key to understand and exploit plant-epiphytic bacteria interactions for air phytoremediation purposes. In this research, we aimed (i) to characterize the functions of epiphytic bacteria isolated from the phylloplane of Brickellia veronicifolia, Flaveria trinervia, Gnaphalium sp., and Allionia choisyi growing spontaneously on multi-PTE contaminated MR and (ii) to compare these against the same plant species in a non-polluted control site (NC). Concentrations (mg kg-1) of PTE on MR leaf surfaces of A. choisyi reached up to 232 for Pb, 13 for Cd, 2,728 for As, 52 for Sb, 123 for Cu in F. trinervia, and 269 for Zn in Gnaphalium sp. In the four plant species, the amount of colony-forming units per cm2 was superior in MR leaves than in NC ones, being A. choisyi the plant species with the highest value. Moreover, the proportion of isolates tolerant to PTE (Zn, Cu, Cd, and Sb), UV light, and drought was higher in MR leaves than in those in NC. Strain BA15, isolated from MR B. veronicifolia, tolerated 150 mg Zn L-1, 30 mg Sb L-1, 25 mg Cu L-1; 80 mg Pb L-1, and was able to grow after 12 h of continuous exposition to UV light and 8 weeks of drought. Plant growth promotion related traits [N fixation, indole acetic acid (IAA) production, and phosphate solubilization] of bacterial isolates varied among plant species isolates and between MR and NC sampling condition. The studied epiphytic isolates possess functions interesting for phytoremediation of air pollutants. The results of this research may contribute to the development of novel and more efficient inoculants for microbe-assisted phytoremediation applied to improve air quality in areas exposed to the dispersion of metal mine tailings.

3.
Sci Total Environ ; 565: 451-461, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27183459

RESUMO

Standard practice in reclamation of mine tailings is the emplacement of a 15 to 90cm soil/gravel/rock cap which is then hydro-seeded. In this study we investigate compost-assisted direct planting phytostabilization technology as an alternative to standard cap and plant practices. In phytostabilization the goal is to establish a vegetative cap using native plants that stabilize metals in the root zone with little to no shoot accumulation. The study site is a barren 62-hectare tailings pile characterized by extremely acidic pH as well as lead, arsenic, and zinc each exceeding 2000mgkg(-1). The study objective is to evaluate whether successful greenhouse phytostabilization results are scalable to the field. In May 2010, a 0.27ha study area was established on the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site with six irrigated treatments; tailings amended with 10, 15, or 20% (w/w) compost seeded with a mix of native plants (buffalo grass, arizona fescue, quailbush, mountain mahogany, mesquite, and catclaw acacia) and controls including composted (15 and 20%) unseeded treatments and an uncomposted unseeded treatment. Canopy cover ranging from 21 to 61% developed after 41 months in the compost-amended planted treatments, a canopy cover similar to that found in the surrounding region. No plants grew on unamended tailings. Neutrophilic heterotrophic bacterial counts were 1.5 to 4 orders of magnitude higher after 41months in planted versus unamended control plots. Shoot tissue accumulation of various metal(loids) was at or below Domestic Animal Toxicity Limits, with some plant specific exceptions in treatments receiving less compost. Parameters including % canopy cover, neutrophilic heterotrophic bacteria counts, and shoot uptake of metal(loids) are promising criteria to use in evaluating reclamation success. In summary, compost amendment and seeding, guided by preliminary greenhouse studies, allowed plant establishment and sustained growth over 4years demonstrating feasibility for this phytostabilization technology.


Assuntos
Atriplex/crescimento & desenvolvimento , Biodegradação Ambiental , Compostagem , Metais Pesados/metabolismo , Mineração , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Arizona , Plantas/metabolismo
4.
Environ Sci Technol ; 46(2): 1019-27, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22191663

RESUMO

Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.


Assuntos
Desenvolvimento Vegetal , Plantas/efeitos dos fármacos , Solo/química , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Metais/química , Metais/metabolismo , Brotos de Planta/metabolismo , Plantas/classificação , Plântula/classificação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Especificidade da Espécie
5.
Sci Total Environ ; 409(6): 1009-16, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21211826

RESUMO

Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by AMF, or a combination of both mechanisms.


Assuntos
Chumbo/metabolismo , Micorrizas/crescimento & desenvolvimento , Prosopis/microbiologia , Rizosfera , Poluentes do Solo/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , Biodiversidade , Chumbo/toxicidade , Mineração , Micorrizas/efeitos dos fármacos , Micorrizas/metabolismo , Prosopis/efeitos dos fármacos , Prosopis/fisiologia , Microbiologia do Solo , Poluentes do Solo/toxicidade , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...