Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831423

RESUMO

Retinal neurodegeneration affects an increasing number of people worldwide causing vision impairments and blindness, reducing quality of life, and generating a great economic challenge. Due to the complexity of the tissue, and the diversity of retinal neurodegenerative diseases in terms of etiology and clinical presentation, so far, there are no cures and only a few early pathological markers have been identified. Increasing efforts have been made to identify and potentiate endogenous protective mechanisms or to abolish detrimental stress responses to preserve retinal structure and function. The discovering of the intracellular monomeric globin neuroglobin (NGB), found at high concentration in the retina, has opened new possibilities for the treatment of retinal disease. Indeed, the NGB capability to reversibly bind oxygen and its neuroprotective function against several types of insults including oxidative stress, ischemia, and neurodegenerative conditions have raised the interest in the possible role of the globin as oxygen supplier in the retina and as a target for retinal neurodegeneration. Here, we provide the undercurrent knowledge on NGB distribution in retinal layers and the evidence about the connection between NGB level modulation and the functional outcome in terms of retinal neuroprotection to provide a novel therapeutic/preventive target for visual pathway degenerative disease.


Assuntos
Terapia de Alvo Molecular , Neuroglobina/antagonistas & inibidores , Degeneração Retiniana/tratamento farmacológico , Animais , Humanos , Modelos Biológicos , Neuroglobina/genética , Neuroglobina/metabolismo , Fármacos Neuroprotetores/farmacologia , Retina/efeitos dos fármacos , Retina/patologia
2.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440755

RESUMO

The expression of the α-subtype of Estrogen Receptor (ERα) characterizes most breast cancers (more than 75%), for which endocrine therapy is the mainstay for their treatment. However, a high percentage of ERα+ breast cancers are de novo or acquired resistance to endocrine therapy, and the definition of new targets for improving therapeutic interventions and the prediction of treatment response is demanding. Our previous data identified the ERα/AKT/neuroglobin (NGB) pathway as a common pro-survival process activated in different ERα breast cancer cell lines. However, no in vivo association between the globin and the malignity of breast cancer has yet been done. Here, we evaluated the levels and localization of NGB in ERα+ breast ductal carcinoma tissue of different grades derived from pre-and post-menopausal patients. The results indicate a strong association between NGB accumulation, ERα, AKT activation, and the G3 grade, while no association with the menopausal state has been evidenced. Analyses of the data set (e.g., GOBO) strengthen the idea that NGB accumulation could be linked to tumor cell aggressiveness (high grade) and resistance to treatment. These data support the view that NGB accumulation, mainly related to ER expression and tumor grade, represents a compensatory process, which allows cancer cells to survive in an unfavorable environment.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Carcinoma Ductal de Mama/química , Receptor alfa de Estrogênio/análise , Neuroglobina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-akt/análise , Transdução de Sinais , Microambiente Tumoral
3.
Arch Biochem Biophys ; 701: 108823, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675812

RESUMO

Dysfunctional mitochondria have severe consequences on cell functions including Reactive Oxygen Specie (ROS) generation, alteration of mitochondrial signaling, Ca2+ buffering, and activation of apoptotic pathway. These dysfunctions are closely linked with degenerative diseases including neurodegeneration. The discovery of neuroglobin (NGB) as an endogenous neuroprotective protein, which effects seem to depend on its mitochondrial localization, could drive new therapeutic strategies against aged-related neurodegenerative diseases. Indeed, high levels of NGB are active against several brain injuries, including neurodegeneration, hypoxia, ischemia, toxicity, and nutrient deprivation opening a new scenario in the comprehension of the relationship between neural pathologies and mitochondrial homeostasis. In this review, we provide the current understanding of the role of mitochondria in neurodegeneration and discuss structural and functional connection between NGB and mitochondria with the purpose of defining a novel mitochondrial-based neuroprotective mechanism(s).


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroglobina/metabolismo , Neuroproteção , Animais , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia
4.
Cancers (Basel) ; 12(9)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872414

RESUMO

Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines. Moreover, reactive oxygen species (ROS) generation, cell apoptosis, and cell migration were evaluated in different BC cells and non-tumorigenic epithelial mammary cells treated with BC cells (i.e., Michigan Cancer Foundation-7, MCF-7) conditioned culture media and extracellular NGB. Results demonstrate that NGB is a component of BC microenvironment. NGB is released in tumor microenvironment by BC cells only under oxidative stress conditions where it can act as autocrine/paracrine factor able to communicate cell resilience against oxidative stress and chemotherapeutic treatment.

5.
Antioxid Redox Signal ; 32(4): 217-227, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686530

RESUMO

Aims: Nuclear factor (erythroid-derived 2)-like-2 factor (NRF-2) is a transcription factor well known to provide an advantage for cancer growth and survival regulating the cellular redox pathway. In breast cancer cells, we recently identified the monomeric heme-globin neuroglobin (NGB) as part of a new mechanism induced by the steroid hormone 17ß-estradiol (E2) against oxidative stress. While there is mounting evidence suggesting a critical role of NGB as a sensor of oxidative stress, scarce information is available about its involvement in NRF-2 pathway activation in breast cancer cells. Results: Although NGB is not involved in the rapid E2-induced NRF-2 stability, E2 loses the capacity to regulate the expression of NRF-2-dependent genes in NGB-depleted MCF-7 cells. These data strongly sustain a role of NGB as a compensatory protein in the E2-activated intracellular pathway devoted to the increase of cancer cells tolerance to reactive oxygen species (ROS) generation in stressing conditions acting as key regulator of NRF-2 pathway activity in a time-dependent manner. Innovation: In this study, we identified a new role of NGB in the cell response to oxidative stress. Conclusion: Altogether, reported results open new insights on the NGB effect in regulating intracellular pathways related to cell adaptive response to stress and, as consequence, to cell survival, beyond its direct effect as ROS scavenger, opening new prospective in cancer therapeutic intervention.


Assuntos
Antioxidantes/farmacologia , Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglobina/genética , Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Neuroglobina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189583

RESUMO

The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and ß (ERß), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.


Assuntos
Antioxidantes/farmacologia , Suplementos Nutricionais , Neoplasias/metabolismo , Polifenóis/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polifenóis/química , Polifenóis/uso terapêutico , Receptores de Estrogênio/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA