Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 224: 111547, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403930

RESUMO

The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 µM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.


Assuntos
Bacillus/enzimologia , Cobre/química , Compostos de Manganês/química , Oxirredutases/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Cinética , Manganês/química , Oxirredução , Óxidos/química , Esporos Bacterianos/enzimologia , Zinco/química
2.
J Inorg Biochem ; 207: 111054, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217351

RESUMO

The functions of heme proteins are modulated by hydrogen bonds (H-bonds) directed at the heme-bound ligands by protein residues. When the gaseous ligands CO, NO, or O2 are bound, their activity is strongly influenced by H-bonds to their atoms. These H-bonds produce characteristic changes in the vibrational frequencies of the heme adduct, which can be monitored by resonance Raman spectroscopy and interpreted with density functional theory (DFT) computations. When the protein employs a cysteinate proximal ligand, bound O2 becomes particularly reactive, the course of the reaction being controlled by H-bonding and proton delivery. In this work, DFT modeling is used to examine the effects of H-bonding to either the terminal (Ot) or proximate (Op) atom of methylthiolate-Fe(II)porphine-O2, as well as to the thiolate S atom. H-bonds to Op produce a positive linear correlation between ν(Fe - O) and ν(O - O), because they increase the sp2 character of Op, weakening both the Fe - O and O - O bonds. H-bonds to Ot produce a negative correlation, because they increase Fe backbonding, strengthening the Fe - O but weakening the O - O bond. Available experimental data accommodate well to the computed pattern. In particular, this correspondence supports the interpretation of cytochrome P450 data by Kincaid and Sligar [M. Gregory, P.J. Mak, S.G. Sligar, J.R. Kincaid, Angew. Chem. Int. Ed. 125 (2013) 5450-5453], involving steering between hydroxylation and lyase reaction channels by differential H-bonds. Similar channeling between the first and second steps of the nitric oxide synthase reaction is likely.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Heme/química , Óxido Nítrico Sintase/química , Oxigênio/química , Análise Espectral Raman/métodos , Teoria da Densidade Funcional , Compostos Ferrosos/química , Hemeproteínas/química , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Oxirredução , Porfirinas/química , Prótons , Vibração
3.
Environ Sci Technol ; 53(8): 4185-4197, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30905145

RESUMO

MnO2 nanoparticles, similar to those found in soils and sediments, have been characterized via their UV-visible and Raman spectra, combined with dynamic light scattering and reactivity measurements. Synthetic colloids were prepared by thiosulfate reduction of permanganate, their sizes controlled with adsorbates acting as capping agents: bicarbonate, phosphate, and pyrophosphate. Biogenic colloids, products of the manganese oxidase, Mnx, were similarly characterized. The band-gap energies of the colloids were found to increase with decreasing hydrodynamic diameter, Dh, and were proportional to 1/ Dh2, as predicted from quantum confinement theory. The intensity ratio of the two prominent Mn-O stretching Raman bands also varied with particle size, consistent with the ratio of edge to bulk Mn atoms. Reactivity of the synthetic colloids toward reduction by Mn2+, in the presence of pyrophosphate to trap the Mn3+ product, was proportional to the surface to volume ratio, but showed surprising complexity. There was also a remnant unreactive fraction, likely attributable to Mn(III)-induced surface passivation. The band gap was similar for biogenic and synthetic colloids of similar size, but decreased when the enzyme solution contained pyrophosphate, which traps the intermediate Mn(III) and slows MnO2 growth. The band gap/size correlation was used to analyze the growth of the enzymatically produced MnO2 oxides.


Assuntos
Compostos de Manganês , Nanopartículas , Difusão Dinâmica da Luz , Manganês , Óxidos , Oxirredutases , Tamanho da Partícula
4.
J Biol Inorg Chem ; 23(7): 1093-1104, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29968177

RESUMO

The multi-copper oxidase (MCO) MnxG from marine Bacillus bacteria plays an essential role in geochemical cycling of manganese by oxidizing Mn2+(aq) to form manganese oxide minerals at rates that are three to five orders of magnitude faster than abiotic rates. The MCO MnxG protein is isolated as part of a multi-protein complex, denoted as Mnx, which includes one MnxG unit and a hexamer of MnxE3F3 subunit. During the oxidation of Mn2+(aq) catalyzed by the Mnx protein complex, an enzyme-bound Mn(III) species was trapped recently in the presence of pyrophosphate (PP) and analyzed using parallel-mode electron paramagnetic resonance (EPR) spectroscopy. Herein, we provide a full analysis of this enzyme-bound Mn(III) intermediate via temperature dependence studies and spectral simulations. This Mnx-bound Mn(III) species is characterized by a hyperfine-coupling value of A(55Mn) = 4.2 mT (corresponding to 120 MHz) and a negative zero-field splitting (ZFS) value of D = - 2.0 cm-1. These magnetic properties suggest that the Mnx-bound Mn(III) species could be either six-coordinate with a 5B1g ground state or square-pyramidal five-coordinate with a 5B1 ground state. In addition, as a control, Mn(III)PP is also analyzed by parallel-mode EPR spectroscopy. It exhibits distinctly different magnetic properties with a hyperfine-coupling value of A(55Mn) = 4.8 mT (corresponding to 140 MHz) and a negative ZFS value of D = - 2.5 cm-1. The different ZFS values suggest differences in ligand environment of Mnx-bound Mn(III) and aqueous Mn(III)PP species. These studies provide further insights into the mechanism of biological Mn2+(aq) oxidation.


Assuntos
Manganês/metabolismo , Oxirredutases/metabolismo , Bacillus/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/química , Modelos Moleculares , Oxirredutases/química , Oxirredutases/isolamento & purificação , Temperatura
5.
J Am Chem Soc ; 139(33): 11369-11380, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28712284

RESUMO

The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu2+, the electron acceptor. Indeed the type 1 Cu2+ is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO2 formation from MnO2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pKa > 8.6 deprotonation, which is assigned to Mn(II)-bound H2O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(µ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pKa 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(µ-OH)2Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(µ-O)2Mn(IV) or an oligomer, which subsequently nucleates MnO2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise difficult oxidation reaction, as well as biomineralization. The mechanism of the Mn(III/IV) conversion step is elucidated in an accompanying paper .


Assuntos
Bacillus/enzimologia , Cobre/metabolismo , Manganês/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Bacillus/metabolismo , Catálise , Compostos de Manganês/metabolismo , Oxirredução , Óxidos/metabolismo
6.
J Am Chem Soc ; 139(33): 11381-11391, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28712303

RESUMO

The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO2. In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO2 production from Mn(II) is presented.


Assuntos
Bacillus/enzimologia , Compostos de Manganês/metabolismo , Manganês/metabolismo , Óxidos/metabolismo , Oxirredutases/metabolismo , Bacillus/metabolismo , Cobre/metabolismo , Difosfatos/metabolismo , Modelos Moleculares , Nanopartículas/metabolismo , Oxirredução
7.
J Am Chem Soc ; 139(26): 8868-8877, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28587464

RESUMO

Manganese-oxide minerals (MnOx) are widely distributed over the Earth's surface, and their geochemical cycling is globally important. A multicopper oxidase (MCO) MnxG protein from marine Bacillus bacteria plays an essential role in producing MnOx minerals by oxidizing Mn2+(aq) at rates that are 3 to 5 orders of magnitude faster than abiotic rates. The MnxG protein is isolated as part of a multiprotein complex denoted as "Mnx" that includes accessory protein subunits MnxE and MnxF, with an estimated stoichiometry of MnxE3F3G and corresponding molecular weight of ≈211 kDa. Herein, we report successful expression and isolation of the MCO MnxG protein without the E3F3 hexamer. This isolated MnxG shows activity for Mn2+(aq) oxidation to form manganese oxides. The complement of paramagnetic Cu(II) ions in the Mnx protein complex was examined by electron paramagnetic resonance (EPR) spectroscopy. Two distinct classes of type 2 Cu sites were detected. One class of Cu(II) site (denoted as T2Cu-A), located in the MnxG subunit, is identified by the magnetic parameters g∥ = 2.320 and A∥ = 510 MHz. The other class of Cu(II) sites (denoted as T2Cu-B) is characterized by g∥ = 2.210 and A∥ = 615 MHz and resides in the putative hexameric MnxE3F3 subunit. These different magnetic properties correlate with the differences in the reduction potentials of the respective Cu(II) centers. These studies provide new insights into the molecular mechanism of manganese biomineralization.


Assuntos
Cobre/química , Compostos de Manganês/química , Manganês/química , Óxidos/química , Bacillus/enzimologia , Sítios de Ligação , Ferro/química , Compostos de Manganês/isolamento & purificação , Compostos de Manganês/metabolismo , Oxirredução , Óxidos/isolamento & purificação , Óxidos/metabolismo
8.
J Am Chem Soc ; 136(24): 8746-54, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24841906

RESUMO

The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C-N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn-Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics.


Assuntos
Indóis/química , Níquel/química , Compostos Organometálicos/química , Isoindóis , Ligantes , Estrutura Molecular , Análise Espectral Raman , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 110(29): 11731-5, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818588

RESUMO

Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.


Assuntos
Bacillus/enzimologia , Compostos de Manganês/metabolismo , Manganês/metabolismo , Complexos Multiproteicos/metabolismo , Óxidos/metabolismo , Oxirredutases/metabolismo , Clonagem Molecular , Primers do DNA/genética , Difosfatos/metabolismo , Escherichia coli , Espectrometria de Massas , Oxirredução , Espectroscopia por Absorção de Raios X
10.
Inorg Chem ; 52(13): 7478-86, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23763617

RESUMO

The gaseous ligands, CO, NO, and O2 interact with the Fe ion in heme proteins largely via backbonding of Fe electrons to the π* orbitals of the XO (X = C, N, O) ligands. In these FeXO adducts, the Fe-X stretching frequency varies inversely with the X-O stretching frequency, since increased backbonding strengthens the Fe-X bond while weakening the X-O bond. Inverse frequency correlations have been observed for all three ligands, despite differing electronic and geometric structures, and despite variable composition of the "FeX" vibrational mode, in which Fe-X stretching and Fe-X-O coordinates are mixed for bent FeXO adducts. We report experimental data for 5-coordinate Co(II)(NO) porphyrin adducts (isoelectronic with Fe(II)(OO) adducts), and the results of density functional theory (DFT) modeling for 5-coordinate Fe(II)(NO), Co(II)(NO), and Fe(II)(OO) adducts. Inverse ν(MX)/ν(XO) correlations are obtained computationally, using model porphyrins with graded electron-donating and -withdrawing substituents to modulate the backbonding. Computed slopes agree satisfactorily with experiment, provided nonhybrid functionals are used, which avoid overemphasizing high-spin states. The BP86 functional gives correct ground states, a closed-shell singlet for Co(II)(NO) and an open-shell singlet for the isoelectronic Fe(II)(OO), as corroborated by structural data for Co(II)(NO), and the ν(MX)/ν(XO) slope agreement with experiment for both adducts. However, for Fe(II)(OO) adducts, the computed inverse ν(MX)/ν(XO) correlation applies only to porphyrins with electron-donating and withdrawing substituents of moderate strength. For substituents more donating than -CH3, a direct correlation is obtained, the Fe-O and O-O bonds weakening in concert. This effect is ascribed to the dominance of σ bonding via the in-plane dxz(+dz(2))-π* orbital, when electron-donating substituents raise the d orbital energies sufficiently to render backbonding (dyz-π*) unimportant.


Assuntos
Cobalto/química , Ferro/química , Óxido Nítrico/química , Porfirinas/química , Elétrons , Heme/química , Modelos Moleculares
11.
Polyhedron ; 57: 64-69, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23745014

RESUMO

The synthesis and photophysical properties of new metallo-octabutoxynaphthalocyanines with Rh(III), Ir(III), and Pt(II) are reported. Various metals were inserted into the metal-free octabutoxynaphthalocyanine and the resultant metal complexes were fully characterized by NMR, UV-vis spectroscopy, and mass spectrometry. The absorption and emission properties of these new complexes were also examined and compared to those of Co(II), Ni(II), and Pd(II) octabutoxynaphthalocyanines. The results provide useful information to understand the effect of these transition metals on the properties of this macrocyclic ring.

12.
Coord Chem Rev ; 257(2): 511-527, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23471138

RESUMO

The gaseous XO molecules (X = C, N or O) bind to the heme prosthetic group of heme proteins, and thereby activate or inhibit key biological processes. These events depend on interactions of the surrounding protein with the FeXO adduct, interactions that can be monitored via the frequencies of the Fe-X and X-O bond stretching modes, νFeX and νXO. The frequencies can be determined by vibrational spectroscopy, especially resonance Raman spectroscopy. Backbonding, the donation of Fe dπ electrons to the XO π* orbitals, is a major bonding feature in all the FeXO adducts. Variations in backbonding produce negative νFeX/νXO correlations, which can be used to gauge electrostatic and H-bonding effects in the protein binding pocket. Backbonding correlations have been established for all the FeXO adducts, using porphyrins with electron donating and withdrawing substituents. However the adducts differ in their response to variations in the nature of the axial ligand, and to specific distal interactions. These variations provide differing vantages for evaluating the nature of protein-heme interactions. We review experimental studies that explore these variations, and DFT computational studies that illuminate the underlying physical mechanisms.

13.
J Biol Inorg Chem ; 17(8): 1151-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22892957

RESUMO

Global cycling of environmental manganese requires catalysis by bacteria and fungi for MnO(2) formation, since abiotic Mn(II) oxidation is slow under ambient conditions. Genetic evidence from several bacteria indicates that multicopper oxidases (MCOs) are required for MnO(2) formation. However, MCOs catalyze one-electron oxidations, whereas the conversion of Mn(II) to MnO(2) is a two-electron process. Trapping experiments with pyrophosphate (PP), a Mn(III) chelator, have demonstrated that Mn(III) is an intermediate in Mn(II) oxidation when mediated by exosporium from the Mn-oxidizing bacterium Bacillus SG-1. The reaction of Mn(II) depends on O(2) and is inhibited by azide, consistent with MCO catalysis. We show that the subsequent conversion of Mn(III) to MnO(2) also depends on O(2) and is inhibited by azide. Thus, both oxidation steps appear to be MCO-mediated, likely by the same enzyme, which is indicated by genetic evidence to be the MnxG gene product. We propose a model of how the manganese oxidase active site may be organized to couple successive electron transfers to the formation of polynuclear Mn(IV) complexes as precursors to MnO(2) formation.


Assuntos
Bactérias/química , Compostos de Manganês/química , Manganês/química , Óxidos/química , Oxirredutases/química , Azidas/farmacologia , Bactérias/enzimologia , Bactérias/metabolismo , Manganês/metabolismo , Compostos de Manganês/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredução , Óxidos/metabolismo , Oxirredutases/antagonistas & inibidores , Oxigênio/química
14.
J Inorg Biochem ; 115: 204-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22824153

RESUMO

The affinity and reactivity of the gaseous molecules CO, NO and O(2) (XO) in heme protein adducts are controlled by secondary interactions, especially by H-bonds donated from distal protein residues. Vibrational spectroscopy, supported by DFT (Density Functional Theory) modeling, has revealed that for NO and O(2), but not for CO, a critical issue is whether the H-bond is donated to the outer or inner atom of the bound diatomic ligand. DFT modeling shows that bound NO and O(2) are ambidentate, both atoms separately acting as H-bond acceptors. This is not the case for CO, whose π* orbital acts as a delocalized H-bond acceptor. Vibrational spectra of heme-XO adducts reveal a general pattern of backbonding variations, marked by families of negative correlations between frequencies associated with FeX and XO bond stretches. For heme-CO adducts, H-bonding increases backbonding, the νFeX/νXO points moving up the backbonding correlation established with model compounds. For NO and O(2) adducts, however, increased backbonding is only observed when the outer atom is the H-bond acceptor. H-bonding to the inner (X) atom instead produces a positive νFeX/νXO correlation. This effect can be reproduced by DFT modeling. Its mechanism is polarization of the sp(2) orbital on the X atom, on the back side of the bent FeXO unit, drawing electrons from both the FeX and XO bonds and weakening them together. Thus, the positioning of H-bond donors in the protein differentially affects bonding and reactivity in heme adducts of NO and O(2).


Assuntos
Heme/química , Hemeproteínas/química , Ferro/química , Modelos Moleculares , Óxido Nítrico/química , Oxigênio/química , Ligação de Hidrogênio
15.
Inorg Chem ; 50(3): 1135-49, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21188985

RESUMO

The structural, optical, and photophysical properties of 1,4,8,11,15,18,22,25-octabutoxyphthalocyaninato-palladium(II), PdPc(OBu)(8), and the newly synthesized platinum analogue PtPc(OBu)(8) are investigated combining X-ray crystallography, static and transient absorption spectroscopy, and relativistic zeroth-order regular approximation (ZORA) Density Functional Theory (DFT)/Time Dependent DFT (TDDFT) calculations where spin-orbit coupling (SOC) effects are explicitly considered. The results are compared to those previously reported for NiPc(OBu)(8) (J. Phys. Chem. A 2005, 109, 2078) in an effort to highlight the effect of the central metal on the structural and photophysical properties of the group 10 transition metal octabutoxyphthalocyanines. Different from the nickel analogue, PdPc(OBu)(8) and PtPc(OBu)(8) show a modest and irregular saddling distortion of the macrocycle, but share with the first member of the group similar UV-vis spectra, with the deep red and intense Q-band absorption experiencing a blue shift down the group, as observed in virtually all tetrapyrrolic complexes of this triad. The blue shift of the Q-band along the MPc(OBu)(8) (M = Ni, Pd, Pt) series is interpreted on the basis of the metal-induced electronic structure changes. Besides the intense deep red absorption, the title complexes exhibit a distinct near-infrared (NIR) absorption due to a transition to the double-group 1E (π,π*) state, which is dominated by the lowest single-group (3)E (π,π*) state. Unlike NiPc(OBu)(8), which is nonluminescent, PdPc(OBu)(8) and PtPc(OBu)(8) show both deep red fluorescence emission and NIR phosphorescence emission. Transient absorption experiments and relativistic spin-orbit TDDFT calculations consistently indicate that fluorescence and phosphorescence emissions occur from the S(1)(π,π*) and T(1)(π,π*) states, respectively, the latter being directly populated from the former, and the triplet state decays directly to the S(0) surface (the triplet lifetime in deaerated benzene solution was 3.04 µs for Pd and 0.55 µs for Pt). Owing to their triplet properties, PdPc(OBu)(8) and PtPc(OBu)(8) have potential for use in photodynamic therapy (PDT) and are potential candidates for NIR light emitting diodes or NIR emitting probes.

16.
Biochemistry ; 49(23): 4864-71, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20459051

RESUMO

Modulation of soluble guanylate cyclase (sGC) activity by nitric oxide (NO) involves two distinct steps. Low-level activation of sGC is achieved by the stoichiometric binding of NO (1-NO) to the heme cofactor, while much higher activation is achieved by the binding of additional NO (xsNO) at a non-heme site. Addition of the allosteric activator YC-1 to the 1-NO form leads to activity comparable to that of the xsNO state. In this study, the mechanisms of sGC activation were investigated using electronic absorption and resonance Raman (RR) spectroscopic methods. RR spectroscopy confirmed that the 1-NO form contains five-coordinate NO-heme and showed that the addition of NO to the 1-NO form has no significant effect on the spectrum. In contrast, addition of YC-1 to either the 1-NO or xsNO forms alters the RR spectrum significantly, indicating a protein-induced change in the heme geometry. This change in the heme geometry was also observed when BAY 41-2272 was added to the xsNO form. Bands assigned to bending and stretching motions of the vinyl and propionate substituents undergo changes in intensity in a pattern suggesting altered tilting of the pyrrole rings to which they are attached. In addition, the N-O stretching frequency increases, with no change in the Fe-NO stretching frequency, an effect modeled via DFT calculations as resulting from a small opening of the Fe-N-O angle. These spectral differences demonstrate different mechanisms of activation by synthetic activators, such as YC-1 and BAY 41-2272, and excess NO.


Assuntos
Ativadores de Enzimas/farmacologia , Guanilato Ciclase/metabolismo , Indazóis/farmacologia , Óxido Nítrico/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise Espectral Raman , Regulação Alostérica/efeitos dos fármacos , Animais , Cristalografia por Raios X , Ativadores de Enzimas/química , Guanilato Ciclase/química , Guanilato Ciclase/fisiologia , Óxido Nítrico/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Guanilil Ciclase Solúvel , Espectrofotometria Ultravioleta
17.
J Am Chem Soc ; 132(13): 4614-25, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20218710

RESUMO

Visible and ultraviolet resonance Raman (RR) spectra are reported for Fe(III)(NO) adducts of myoglobin variants with altered polarity in the distal heme pockets. The stretching frequencies of the Fe(III)-NO and N-O bonds, nu(FeN) and nu(NO), are negatively correlated, consistent with backbonding. However, the correlation shifts to lower nu(NO) for variants lacking a distal histidine. DFT modeling reproduces the shifted correlations and shows the shift to be associated with the loss of a lone-pair donor interaction from the distal histidine that selectively strengthens the N-O bond. However, when the model contains strongly electron-withdrawing substituents at the heme beta-positions, nu(FeN) and nu(NO) become positively correlated. This effect results from Fe(III)-N-O bending, which is induced by lone-pair donation to the N(NO) atom. Other mechanisms for bending are discussed, which likewise lead to a positive nu(FeN)/nu(NO) correlation, including thiolate ligation in heme proteins and electron-donating meso-substituents in heme models. The nu(FeN)/nu(NO) data for the Fe(III) complexes are reporters of heme pocket polarity and the accessibility of lone pair, Lewis base donors. Implications for biologically important processes, including NO binding, reductive nitrosylation, and NO reduction, are discussed.


Assuntos
Simulação por Computador , Compostos Férricos/química , Modelos Químicos , Mioglobina/química , Óxido Nítrico/química , Estrutura Molecular , Teoria Quântica , Análise Espectral Raman
18.
J Phys Chem B ; 114(45): 14205-13, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20104923

RESUMO

The ground and excited state properties of two metallo-tetraphenyltetrabenzoporphyrins (MTPTBP) have been investigated by a combination of DFT/TDDFT and transient absorption spectrometry to draw a complete picture of the excited state deactivation. The Cu(II) and Co(II) complexes were chosen to investigate the impact of the half-filled d orbitals on the photophysical properties of the tetrapyrrole macrocycle. The first observed transient in CuTPTBP was assigned to the triplet state that equilibrated with a ligand-to-metal charge transfer (LMCT) state. Ground state repopulation, completed within 53 ps, occurred via a lower-lying LMCT state. The dependence of the observed lifetime on solvent polarity confirmed the participation of the LMCT state in the overall deactivation process. For CoTPTBP, the first observed transient, a π-localized triplet state, converted to a hot d,d state, wherein intramolecular cooling occurred and completed within 3 ps. The cooled d,d state decayed to the ground state in an exponential manner with a 17 ps lifetime.


Assuntos
Metaloporfirinas/química , Teoria Quântica , Análise Espectral , Elementos de Transição/química , Absorção , Elétrons , Hexanos/química , Modelos Moleculares , Conformação Molecular , Nitrilas/química , Tolueno/química
19.
Curr Opin Struct Biol ; 18(5): 623-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18606227

RESUMO

Raman spectroscopy can provide unique information on the evolution of structure in proteins over a wide range of time scales; the picosecond to millisecond range can be accessed with pump-probe techniques. Specific parts of the molecule are interrogated by tuning the probe laser to a resonant electronic transition, including the UV transitions of aromatic residues and of the peptide bond. Advances in laser technology have enabled the characterization of transient species at an unprecedented level of structural detail. Applications to protein unfolding and allostery are reviewed.


Assuntos
Proteínas/química , Análise Espectral Raman/métodos , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Espalhamento de Radiação , Sensibilidade e Especificidade , Termodinâmica , Raios Ultravioleta
20.
Inorg Chem ; 47(10): 4275-89, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18407627

RESUMO

Ultrafast photodynamics and density functional theory/time-dependent density functional theory (DFT/TDDFT) results for complexes of Co and Cu with 5,9,14,18,23,27,32,36-octabutoxynaphthalocyanine [CoNc(OBu)8 and CuNc(OBu)8] are reported. As a basis for this work, details concerning the syntheses of these complexes and the corresponding Zn complex (used as a reference) are given. Transient absorption spectrometry with femtosecond time resolution combined with a detailed DFT/TDDFT analysis has been employed to construct a complete picture of the excited-state dynamics after Q-band excitation of the Co and Cu complexes and to gain an understanding of the relationship between the nature of the metal center and the excited-state lifetime. The Co complex was shown to return to its ground state via two competing channels: a (2)T1(pi, pi*) state that decayed with a lifetime of 1 ps and a low-lying (2)(d, d) state that repopulated the ground-state surface with a lifetime of 15 ps. CuNc(OBu)8 showed ground-state repopulation from the (2)T1(pi, pi*) state via a lower-lying ligand-to-metal charge-transfer (LMCT) state that was completed within a few nanoseconds. The photophysical behavior of the cobalt and copper complexes was compared to that previously reported for the nickel analog in an effort to highlight the effect of the central metal on the nature and rates of the deactivation pathways. The results described in this work provide basic knowledge that is relevant to the use of these compounds as photothermal sensitizers in cancer therapy.


Assuntos
Compostos Organometálicos/química , Absorção , Elétrons , Cinética , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Fotoquímica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...