Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 13(9): 1140-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21846293

RESUMO

BACKGROUND AIMS: Bone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34(+)-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI. METHODS: The need for a large number of cells was satisfied by the use of a previously established protocol allowing the expansion of human CD34(+) cells isolated from neonatal and adult hematopoietic tissues. We evaluated gene expression, endothelial differentiation potential and cytokine release by BM-derived cells during in vitro culture. Basal and expanded CD34(+) cells were used as a delivery product in a murine AMI model consisting of a coronary artery ligation (CAL). Cardiac function recovery was evaluated after injecting basal or expanded cells. RESULTS: Gene expression analysis of in vitro-expanded cells revealed that endothelial markers were up-regulated during culture. Moreover, expanded cells generated a CD14(+) subpopulation able to differentiate efficiently into VE-cadherin-expressing cells. In vivo, we observed a cardiac function recovery in mice sequentially treated with basal and expanded cells injected 4 h and 7 days after CAL, respectively. CONCLUSIONS: Our data suggest that combining basal and expanded BM-derived CD34(+) cells in a specific temporal pattern of administration might represent a promising strategy for a successful cell-based therapy.


Assuntos
Vasos Coronários/cirurgia , Ligadura , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Animais , Antígenos CD/metabolismo , Antígenos CD34/biossíntese , Medula Óssea/patologia , Caderinas/metabolismo , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Endotélio/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Recuperação de Função Fisiológica
2.
PLoS One ; 6(7): e22158, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789227

RESUMO

BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+) were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+) cells with enhanced self renewal and cardioprotection.


Assuntos
Antígenos CD34/metabolismo , Cardiotônicos/farmacologia , Sangue Fetal/citologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Acetilação/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Clonais , Análise por Conglomerados , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos , Fenótipo , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Ácido Valproico/farmacologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...