Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Brain Res ; : 148963, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705555

RESUMO

BACKGROUND AND AIM: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD: pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS: The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION: Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.

2.
Int J Biol Macromol ; 259(Pt 2): 129228, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184051

RESUMO

Reactive oxygen species (ROS) play essential roles in cellular functions, but maintaining ROS balance is crucial for effective therapeutic interventions, especially during cell therapy. In this study, we synthesized an injectable gelatin-based hydrogel, in which polydopamine nanoparticles were entrapped using supramolecular interactions. The surfaces of the nanoparticles were modified using adamantane, enabling their interactions with ß-cyclodextrin-conjugated with gelatin. We evaluated the cytotoxicity and antioxidant properties of the hydrogel on neonatal rat cardiomyocytes (NRCM), where it demonstrated the ability to increase the metabolic activity of NRCMs exposed to hydrogen peroxide (H2O2) after 5 days. Hydrogel-entrapped nanoparticle exhibited a high scavenging capability against hydroxyl radical, 1'-diphenyl-2-picrylhydrazyl radicals, and H2O2, surpassing the effectiveness of ascorbic acid solution. Notably, the presence of polydopamine nanoparticles within the hydrogel promoted the proliferation activity of NRCMs, even in the absence of excessive ROS due to H2O2 treatment. Additionally, when the hydrogel with nanoparticles was injected into an air pouch model, it reduced inflammation and infiltration of immune cells. Notably, the levels of anti-inflammatory factors, IL-10 and IL-4, were significantly increased, while the pro-inflammatory factor TNF-α was suppressed. Therefore, this novel ROS-scavenging hydrogel holds promise for both efficient cell delivery into inflamed tissue and promoting tissue repair.


Assuntos
Hidrogéis , Indóis , Nanopartículas , Polímeros , Ratos , Animais , Hidrogéis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Gelatina/farmacologia , Miócitos Cardíacos/metabolismo , Peróxido de Hidrogênio/farmacologia , Proliferação de Células
3.
Reprod Sci ; 31(3): 840-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37848645

RESUMO

Unexpected poor ovarian response (UPOR) occurs when nine or fewer oocytes are retrieved from a young patient with normal ovarian reserve. Bone morphogenetic protein15 (BMP15) and growth differentiation factor 9 (GDF9) are two oocyte-specific factors with pivotal role in folliculogenesis. The aim of this study was to assess the relation between BMP15 and GDF9 variants with UPOR. Hundred women aged ≤ 39 with AMH ≥ 1.27 IU/ml participated as UPOR and normal ovarian responders (NOR) based on their oocyte number. Each group consisted of 50 patients. After genomic DNA extraction, the entire exonic regions of BMP15 and GDF9 were amplified and examined by direct sequencing. Western blotting was performed to determine the expression levels of BMP15 and GDF9 in follicular fluid. Additionally, in silico analysis was applied to predict the effect of discovered mutations. From four novel variants of BMP15 and GDF9 genes, silent mutations (c.744 T > C) and (c.99G > A) occurred in both groups, whereas missense variants: c.967-968insA and c.296A > G were found exclusively in UPORs. The latter variants caused reduction in protein expression. Moreover, the mutant allele (T) in a GDF9 polymorphism (C447T) found to be more in NOR individuals (58% NOR vs. 37% UPOR (OR = 2.3, CI 1.32-4.11, p = 0.004).The novel missense mutations which were predicted as damaging, along with other mutations that happened in UPORs might result in ovarian resistance to stimulation. The mutant allele (T) in C447T polymorphism has a protective effect. It can be concluded that there is an association between BMP15 and GDF9 variants and follicular development and ovarian response.


Assuntos
Proteína Morfogenética Óssea 15 , Fator 9 de Diferenciação de Crescimento , Humanos , Feminino , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Ovário/metabolismo , Oócitos/metabolismo , Líquido Folicular/metabolismo
4.
Stem Cell Res Ther ; 14(1): 343, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017561

RESUMO

BACKGROUND: The Wnt signaling pathway has been implicated in the pathogenesis of fibrotic disorders and malignancies. Hence, we aimed to assess the potential of the induced pluripotent stem cells (IPS) in modulating the expression of the cardinal genes of the Wnt pathway in a mouse model of idiopathic pulmonary fibrosis (IPF). METHODS: C57Bl/6 mice were randomly divided into three groups of Control, Bleomycin (BLM), and BLM + IPS; the BLM mice received intratracheal instillation of bleomycin, BLM + IPS mice received tail vein injection of IPS cells 48 h post instillation of the BLM; The Control group received Phosphate-buffered saline instead. After 3 weeks, the mice were sacrificed and Histologic assessments including hydroxy proline assay, Hematoxylin and Eosin, and Masson-trichrome staining were performed. The expression of the genes for Wnt, ß-Catenin, Lef, Dkk1, and Bmp4 was assessed utilizing specific primers and SYBR green master mix. RESULTS: Histologic assessments revealed that the fibrotic lesions and inflammation were significantly alleviated in the BLM + IPS group. Besides, the gene expression analyses demonstrated the upregulation of Wnt, ß-Catenin, and LEF along with the significant downregulation of the Bmp4 and DKK1 in response to bleomycin treatment; subsequently, it was found that the treatment of the IPF mice with IPS cells results in the downregulation of the Wnt, ß-Catenin, and Lef, as well as upregulation of the Dkk1, but not the Bmp4 gene (P values < 0.05). CONCLUSION: The current study highlights the therapeutic potential of the IPS cells on the IPF mouse model in terms of regulating the aberrant expression of the factors contributing to the Wnt signaling pathway.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Camundongos Endogâmicos C57BL , Pulmão/patologia
5.
Iran J Allergy Asthma Immunol ; 22(2): 190-199, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37496412

RESUMO

The pathogenesis of idiopathic pulmonary fibrosis (IPF) is quite similar to that of cancer pathogenesis, and several pathways appear to be involved in both disorders. The mammalian target of the rapamycin (mTOR) pathway harbors several established oncogenes and tumor suppressors. The same signaling molecules and growth factors, such as vascular endothelial growth factor (VEGF), contributing to cancer development and progression play a part in fibroblast proliferation, myofibroblast differentiation, and the production of extracellular matrix in IPF development as well. The expression of candidate genes acting upstream and downstream of mTORC1, as well as Vegf and low-density lipoprotein receptor related protein 1(Lrp1), was assessed using specific primers and quantitative polymerase chain reaction (qPCR) within the lung tissues of bleomycin (BLM)-induced IPF mouse models. Lung fibrosis was evaluated by histological examinations and hydroxyproline colorimetric assay. BLM-exposed mice developed lung injuries characterized by inflammatory manifestations and fibrotic features, along with higher levels of collagen and hydroxyproline. Gene expression analyses indicated a significant elevation of regulatory associated protein of mTOR (Raptor), Ras homolog enriched in brain (Rheb), S6 kinase 1, and Eukaryotic translation initiation factor 4E-binding protein 1 (4Ebp1), as well as a significant reduction of Vegfa, Tuberous sclerosis complex (Tsc2), and Lrp1; no changes were observed in the Tsc1 mRNA level. Our findings support the elevation of S6K1 and 4EBP1 in response to the TSC/RHEB/mTORC1 axis, which profoundly encourages the development and establishment of IPF and cancer. In addition, this study suggests a possible preventive role for VEGF-A and LRP1 in the development of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hidroxiprolina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Transporte , Fatores de Transcrição , Fibrose Pulmonar Idiopática/genética , Fibrose , Mamíferos/metabolismo
6.
Basic Clin Neurosci ; 14(1): 31-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346872

RESUMO

Introduction: Strategies of Schwann cell (SC) transplantation for regeneration of peripheral nerve injury involve many limitations. Stem cells can be used as alternative cell source for differentiation into Schwann cells. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ectomesenchymal stem cells (OE-MSCs) derived from neural crest can spontaneously differentiate into SC lineage. Methods: OE-MSCs were isolated from human nasal mucosa and characterized by the mesenchymal and neural crest markers. The cells were cultured in glial growth factors-free medium and further investigated in terms of the phenotypic and functional properties. Results: Immunocytochemical staining and real-time PCR analysis indicated that the cultured OE-MSCs expressed SCs markers, SOX10, p75, S100, GFAP and MBP, differentiation indicative. It was found that the cells could secrete neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Furthermore, after co-cultured with PC12, the mean neurite length was enhanced by OE-MSCs. Conclusion: The findings indicated that OE-MSCs could be differentiated spontaneously into SC-like phenotypes, suggesting their applications for transplantation in peripheral nerve injuries.

7.
IBRO Neurosci Rep ; 14: 285-292, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942319

RESUMO

Introduction: Finding a non-invasive and repeatable tool has been recommended to make an accurate diagnosis of Alzheimer's disease (AD) and Parkinson's disease (PD). Methods: 70 volunteers participated in three groups: 24 with mild dementia of AD, 24 in the first and second stages of PD, and 22 healthy controls. After valuing the scores of cognitive tests, the salivary levels of phosphorylated tau (p-tau), total alpha-synuclein (α-syn), and beta-amyloid 1-42 (Aß) proteins have been evaluated. Finally, the cutoff points, receiver operating characteristic (ROC), sensitivity, and specificity have been calculated to find accurate and detectable biomarkers. Results: Findings showed that the salivary level of Aß was higher in both PD (p < 0.01) and AD (p < 0.001) patients than in controls. Moreover, the level of α-syn in both PD and AD patients was similarly lower than in controls (p < 0.05). However, the level of p-tau was only higher in the AD group than in the control (p < 0.01). Salivary Aß 1-42 level at a 60.3 pg/ml cutoff point revealed an excellent performance for diagnosing AD (AUC: 0.81). Conclusion: Evaluation of p-tau, α-syn, and Aß 1-42 levels in the saliva of AD and PD patients could help the early diagnosis. The p-tau level might be valuable for differentiation between AD and PD. Therefore, these hopeful investigations could be done to reduce the usage of invasive diagnostic methods, which alone is a success in alleviating the suffering of AD and PD patients. Moreover, introducing accurate salivary biomarkers according to the pathophysiology of AD and PD should be encouraged.

8.
Protein Pept Lett ; 30(1): 65-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36284385

RESUMO

BACKGROUND: Interneural gap junctional coupling represents neural development that decreases during the postnatal period. The decrease of gap junction function coincides with the main period of chemical synapse creation and increment of synaptic activity during postnatal weeks 1 to 3. METHODS: Here, we have assessed the role of chemical synapses on connexin (Cx) expression in neurons and glial cells of hippocampal and cortical neurons. We characterized the impact of NMDA receptors blockade on the expression of Cx36 and Cx43 proteins by western blot analysis in postnatal day (PND)14 and PND28. MK801 was injected subcutaneously from the first day of birth until 14 or 28 days, depending on the experimental groups. Saline was injected in the same volumes in the control group. RESULTS: Early postnatal blockade of the NMDA subtype of glutamate receptors by the non-competitive antagonist dizocilpine maleate (MK801) arrested the developmental reduction in gap junctions during the initial postnatal weeks. Expression of Cx43 declined in PND28 compared to PND14 in visual cortex (VC) neurons. Also, we found that the expression of Cx36 and Cx43 augmented in the rats' VC in PND28 following the blockade of NMDA receptors. Expression of Cx36 declined in PND28 compared to PND14 in hippocampal neurons. Also, we found that the expression of Cx36 augmented in the rats' hippocampal neurons in PND14 and PND28 following a blockade of NMDA receptors. CONCLUSION: These results suggest that the postnatal enhancement in glutamatergic synaptic activity is associated with the loss of gap junctional connections and downregulation of Cx36 and Cx43 between developing neurons and glial cells.


Assuntos
Conexina 43 , Conexinas , Ratos , Animais , Conexinas/análise , Conexinas/genética , Conexinas/metabolismo , Conexina 43/genética , Conexina 43/análise , Conexina 43/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/análise , Maleato de Dizocilpina/metabolismo , Regulação para Cima , Neurônios/química , Neurônios/metabolismo , Hipocampo/metabolismo
9.
Curr Pharm Des ; 28(42): 3428-3445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330626

RESUMO

BACKGROUND: Imbalances in dopamine levels result in neurological and psychological disorders such as elevated dopamine in Parkinson's disease. OBJECTIVE: Despite a considerable number of advertisements claiming Aloe-vera's effectiveness in PD treatment, it has hidden long-term disadvantages for healthy people and PD patients. METHODS: In the present investigation, the impacts of Aloe-vera on dopaminergic cells were evaluated. RESULTS: The results indicated that the focal adhesion kinase (FAK) enhancement was in line with the Bax/Bcl2 ratio decrement, reactive oxygen specious (ROS) production, and nonsignificant alteration in the sub-G1phase of the cell cycle. It led to glial cell-derived neurotrophic factor (GDNF) upregulation but did not significantly change the BDNF level involved in depression and motor impairment recovery. These events apparently resulted in the enhancement in dopaminergic cell viability and neurite length and attenuated PI+ cells. However, it also induced neuronal nitric oxide synthase (nNOS) overexpression and nitric oxide (NO) and lactate dehydrogenase (LDH) production. Notably, docking results of the catalytic domain in tyrosine hydroxylase (TH) with the Aloe-vera constituents showed strong binding of most Aloe-vera constituents with the catalytic domain of TH, even stronger than L-tyrosine as an original substrate. Following the docking results, Aloe-vera downregulated TH protein and attenuated dopamine. CONCLUSION: It can be hypothesized that Aloe-vera improves PD symptoms through enhancement in antiapoptotic markers and neurotrophic factors, while it suppresses TH and dopamine in the form of a Trojan horse, later resulting in the future deterioration of the disease symptoms. The results provide cues to pharmaceutical companies to use the active components of Aloe-vera as putative agents in neurological and psychiatric disorders and diseases to decrease dopamine in patients with enhanced dopamine levels.


Assuntos
Doença de Parkinson , Esquizofrenia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Domínio Catalítico , Compostos Fitoquímicos , Preparações Farmacêuticas
10.
Neuropeptides ; 96: 102295, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36280441

RESUMO

BACKGROUND: Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. This study aims to investigate the therapeutic effects of melittin (MEL) on a 3-acetylpyridine-induced (3-AP) cerebellar ataxia (CA) rat model. METHODS: Initially, CA rat models were generated by 3-AP administration followed by the subcutaneous injection of MEL. The open-field test was used for the evaluation of locomotion and anxiety. Immunohistochemistry was also conducted for the autophagy markers of LC3 and Beclin1. In the next step, the morphology of the astrocyte, the cell responsible for maintaining homeostasis in the CNS, was evaluated by the Sholl analysis. RESULTS: The findings suggested that the administration of MEL in a 3-AP model of ataxia improved locomotion and anxiety (P < 0.001), decreased the expression of LC3 (P < 0.01) and Beclin1 (P < 0.05), increased astrocyte complexity (P < 0.05) and reduced astrocyte cell soma size (P < 0.001). CONCLUSIONS: Overall, the findings imply that the MEL attenuates the 3-AP-induced autophagy, causes cell death and improves motor function. As such, it could be used as a therapeutic procedure for CA due to its neuroprotective effects.


Assuntos
Ataxia Cerebelar , Meliteno , Animais , Ratos , Ataxia/metabolismo , Autofagia , Proteína Beclina-1/metabolismo , Morte Celular , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/metabolismo , Gliose/metabolismo , Meliteno/farmacologia , Células de Purkinje , Ratos Sprague-Dawley
11.
Iran J Allergy Asthma Immunol ; 21(3): 263-272, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35822677

RESUMO

Idiopathic pulmonary fibrosis (IPF) is among the illnesses with a high mortality rate, yet no specific cause has been identified; as a result, successful treatment has not been achieved. Among the novel approaches for treating such hard-to-cure diseases are induced pluripotent stem cells (IPSCs). Some studies have shown these cells' potential in treating IPF. Therefore, we aimed to investigate the impact of IPSCs on insulin-like growth factor (Igf) signaling as a major contributor to IPF pathogenesis.  C57BL/6 mice were intratracheally instilled with Bleomycin (BLM) or phosphate-buffered saline; the next day, half of the bleomycin group received IPSCs through tail vein injection. Hydroxyproline assay and histologic examinations have been performed to assess lung fibrosis. The gene expression was evaluated using specific primers for Igf-1, Igf-2, and insulin receptor substrate 1 (Irs-1) genes and SYBR green qPCR master mix. The data have been analyzed using the 2-ΔΔCT method. The mice that received Bleomycin showed histological characteristics of the fibrotic lung injury, which was significantly ameliorated after treatment with IPSCs comparable to the control group. Furthermore, gene expression analyses revealed that in the BLM group, Igf1, Igf2, and Irs1 genes were significantly upregulated, which were returned to near-normal levels after treatment with IPSCs. IPSCs could modulate the bleomycin-induced upregulation of Igf1, Igf2, and Irs1 genes. This finding reveals a new aspect of the therapeutic impact of the IPSCs on IPF, which could be translated into other fibrotic disorders.


Assuntos
Fibrose Pulmonar Idiopática , Células-Tronco Pluripotentes Induzidas , Animais , Bleomicina/efeitos adversos , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
J Biomed Mater Res A ; 110(5): 1134-1146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35075781

RESUMO

Implantation of a suitable nerve guide conduit (NGC) seeded with sufficient Schwann cells (SCs) is required to improve peripheral nerve regeneration efficiently. Given the limitations of isolating and culturing SCs, using various sources of stem cells, including mesenchymal stem cells (MSCs) obtained from nasal olfactory mucosa, can be desirable. Olfactory ecto-MSCs (OE-MSCs) are a new population of neural crest-derived stem cells that can proliferate and differentiate into SCs and can be considered a promising autologous alternative to produce SCs. Regardless, a biomimetic physicochemical microenvironment in NGC such as electroconductive substrate can affect the fate of transplanted stem cells, including differentiation toward SCs and nerve regeneration. Therefore, in this study, the effect of 3D printed polycaprolactone (PCL)/polypyrrole (PPy) conductive scaffolds on differentiation of human OE-MSCS into functional SC-like phenotypes was investigated. Biological evaluation of 3D printed scaffolds was examined by in vitro culturing the OE-MSCs on samples surfaces, and conductivity showed no effect on increased cell attachment, proliferation rate, viability, and distribution. In contrast, immunocytochemical staining and real-time polymerase chain reaction analysis indicated that 3D structures coated with PPy could provide a favorable microenvironment for OE-MSCs differentiation. In addition, it was found that differentiated OE-MSCs within PCL/PPy could secrete the highest amounts of nerve growth factor and brain-derived neurotrophic factor neurotrophic factors compared to pure PCL and 2D culture. After co-culturing with PC12 cells, a significant increase in neurite outgrowth on PCL/PPy conductive scaffold seeded with differentiated OE-MSCs. These findings indicated that 3D printed PCL/PPy conductive scaffold could support differentiation of OE-MSCs into SC-like phenotypes to promote neurite outgrowth, suggesting their potential for neural tissue engineering applications.


Assuntos
Células-Tronco Mesenquimais , Polímeros , Animais , Diferenciação Celular , Humanos , Crescimento Neuronal , Fenótipo , Poliésteres , Polímeros/farmacologia , Pirróis/farmacologia , Ratos , Células de Schwann , Alicerces Teciduais/química
13.
Biomater Sci ; 9(13): 4541-4567, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075945

RESUMO

The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.


Assuntos
Nanopartículas , Osteogênese , Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Engenharia Tecidual , Alicerces Teciduais
14.
Metab Brain Dis ; 36(7): 2179, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34146217

RESUMO

A Correction to this paper has been published: https://doi.org/10.1007/s11011-021-00779-4.

15.
Neurochem Res ; 46(8): 2112-2130, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008120

RESUMO

Carbamazepine (CBZ) is an anticonvulsant drug that usually is used for the treatment of seizures. The anti-epileptic and the anti-epileptogenic effect of exercise has been reported, as well. This study was aimed to evaluate the synergic effect of combined therapy of exercise and CBZ in epileptic rats, as well as the alternation of the GABA pathway as a possible involved mechanism. The seizure was induced by pentylenetetrazol (PTZ) injection. Animals were divided into sham, seizure, exercise (EX), CBZ (25, 50 and 75), EX + CBZ (25, 50 and 75). Treadmill forced running for 30 min has been considered as the exercise 5 days per week for four weeks. CBZ was injected in doses of 25, 50 and 75 mg/kg, half an hour before seizure induction and 5 h after doing exercise in the animals forced to exercise. Seizure severity reduced and latency increased in the EX + CBZ (25) and EX + CBZ (50) groups compared to the seizure group. The distribution of GAD65 in both hippocampal CA1 and CA3 areas increased in the EX + CBZ (75) group. GABAA receptor α1 was up-regulated in the CA3 area of the EX + CBZ (75) group. The distribution of GAD65 in the cortical area increased in EX, EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. GABAA receptor α1 was up-regulated in the neocortex of EX + CBZ (50), CBZ (75) and EX + CBZ (75) groups. Our findings suggested that exercise has improved the efficacy of CBZ and reduced the anti-epileptic dose. The enhancement of GABA signaling might be involved in the synergistic effect of exercise and CBZ.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbamazepina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/terapia , Condicionamento Físico Animal/fisiologia , Animais , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/enzimologia , Região CA3 Hipocampal/metabolismo , Epilepsia/induzido quimicamente , Glutamato Descarboxilase/metabolismo , Masculino , Neocórtex/enzimologia , Neocórtex/metabolismo , Pentilenotetrazol , Ratos Wistar , Receptores de GABA-A/metabolismo
16.
J Chem Neuroanat ; 114: 101946, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745942

RESUMO

Maternal diabetes during pregnancy affects the development of hippocampus in the offspring. Brain-derived neurotrophic factor (BDNF) has received increasing attention for its role in regulating the survival and differentiation of neuronal cells in developing and adult brain. In the current study, we evaluated the effects of maternal diabetes and insulin treatment on expression and distribution pattern of BDNF in the hippocampus of neonatal rats at the first two postnatal weeks. We found no differences in hippocampal expression of BDNF between diabetics with normal control or insulin treated neonatal rats at postnatal day (P0) (P > 0.05 each). Nevertheless, there was a marked BDNF downregulation in both sides' hippocampi of male/female diabetic group in two-week-old offspring (P ≤ 0.05 each). Furthermore, the numerical density of BDNF+ cells was significantly reduced in the right/left dentate gyrus (DG) of male and female newborns born to diabetic animals at all studied postnatal days (P ≤ 0.05 each). In addition, a lower number of reactive cells have shown in the all hippocampal subareas in the diabetic pups at P14 (P ≤ 0.05 each). Our results have demonstrated that the insulin-treatment improves some of the negative impacts of diabetes on the expression of hippocampal BDNF in the newborns. We conclude that diabetes in pregnancy bilaterally disrupts the expression of BDNF in the hippocampus of the both male and female newborns at early postnatal days. In addition, good glycemic control by insulin in the most cases is sufficient to prevent the alterations in expression of BDNF protein in developing hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hipocampo/metabolismo , Complicações na Gravidez , Animais , Animais Recém-Nascidos , Feminino , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Gravidez , Ratos , Ratos Wistar
17.
Metab Brain Dis ; 36(1): 133-144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975719

RESUMO

Brain-derived neurotrophic factor (BDNF), as a member of neurotrophin family, plays an important role in neurogenesis, neuronal survival and synaptic plasticity. BDNF is strongly expressed in the hippocampus, where has been associated with memory consolidation, learning, and cognition. In this study, Real-time PCR, immunohistochemistry, and stereology were used to evaluate the gender differences and left-right asymmetries in the expression of BDNF in the developing rat hippocampus during the neurogenesis-active period, at postnatal days P0, P7 and P14. We found the lowest expression of BDNF in the right side and the highest in the left side hippocampi of both male and female neonates at P14 (P ≤ 0.05 each). At the same time, there were significant differences in the hippocampal expression of BDNF between males and females (P ≤ 0.05 each). No important differences in the number of BDNF expressing neurons in different subregions of right/left hippocampus were observed between male and female animals at P0 and P7 (P > 0.05). Furthermore, the highest numerical density of BDNF positive cells was detected in the both sides hippocampal CA1 in the male/female offspring at P7, and in the CA2, CA3 and dentate gyrus at P14 (P ≤ 0.05 each). Based on these findings, it can be concluded that there are prominent sex and interhemispheric differences in the expression of BDNF in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development, structure, and function of the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lateralidade Funcional/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Animais , Feminino , Masculino , Ratos , Ratos Wistar
18.
Int J Fertil Steril ; 14(2): 143-149, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32681627

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrine disorder diagnosed by anovulation hyperandrogenism. Hyperandrogenism increases apoptosis, which will eventually disturb follicular growth in PCOS patients. Since mitochondria regulate apoptosis, they might be affected by high incidence of follicular atresia. This may cause infertility. Since vitamin D3 has been shown to improve the PCOS symptoms, the aim of study was to investigate the effects vitamin D3 on mtDNA copy number, mitochondrial biogenesis, and membrane integrity of granulosa cells in a PCOS-induced mouse model. MATERIALS AND METHODS: In this experimental study, the PCOS mouse model was induced by dehydroepiandrosterone (DHEA). Granulosa cells after identification by follicle-stimulating hormone receptor (FSHR) were cultured in three groups: 1. granulosa cells treated with vitamin D3 (100 nM for 24 hours), 2. granulosa cells without any treatments, 3. Non-PCOS granulosa cells (control group). Mitochondrial biogenesis gene (TFAM) expression was compared between different groups using real-time PCR. mtDNA copy number was also investigated by qPCR. The mitochondrial structure was evaluated by transmission electron microscopy (TEM). Hormonal levels were measured by an enzymelinked immunosorbent assay (ELISA) kit. RESULTS: The numbers of pre-antral and antral follicles increased in PCOS group in comparison with the non-PCOS group. Mitochondrial biogenesis genes were downregulated in granulosa cells of PCOS mice when compared to the non-PCOS granulosa cells. However, treatment with vitamin D3 increased mtDNA expression levels of these genes compared to PCOS granulosa cells with no treatments. Most of the mitochondria in the PCOS group were spherical with almost no cristae. Our results showed that in the PCOS group treated with vitamin D3, the mtDNA copy number increased significantly in comparison to PCOS granulosa cells with no treatments. CONCLUSION: According to this study, we can conclude, vitamin D3 improves mitochondrial biogenesis and membrane integrity, mtDNA copy number in granulosa cells of PCOS mice which might improve follicular development and subsequently oocyte quality.

19.
J Cell Physiol ; 235(9): 6113-6126, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32048305

RESUMO

Polycystic ovarian syndrome (PCOS) is a disorder characterized by oligomenorrhea, anovulation, and hyperandrogenism. Altered mitochondrial biogenesis can result in hyperandrogenism. The goal of this study was to examine the effect of vitamin D3 on mitochondrial biogenesis of the granulosa cells in the PCOS-induced mouse model. Vitamin D3 applies its effect via the mitogen-activated pathway kinase-extracellular signal-regulated kinases (MAPK-ERK1/2) pathway. The PCOS mouse model was induced by the injection of dehydroepiandrosterone (DHEA). Isolated granulosa cells were subsequently treated with vitamin D3, MAPK activator, and MAPK inhibitor. Gene expression levels were measured using real-time polymerase chain reaction. MAPK proteins were investigated by western blot analysis. We also determined reactive oxygen species (ROS) levels with 2', 7'-dichlorofluorescein diacetate. Mitochondrial membrane potential (mtMP) was also measured by TMJC1. Mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-α and nuclear respiratory factor), antioxidant (superoxide dismutase, glutathione peroxidase, and catalase), and antiapoptotic (B-cell lymphoma-2) genes were upregulated in the PCOS mice that treated with vitamin D3 compared with the PCOS mice without any treatment. Vitamin D3 and MAPK activator-treated groups also reduced ROS levels compared with the nontreated PCOS group. In summary, vitamin D3 and MAPK activator increased the levels of mitochondrial biogenesis, MAPK pathway, and mtMP markers, while concomitantly decreased ROS levels in granulosa cells of the PCOS-induced mice. This study suggests that vitamin D3 may improve mitochondrial biogenesis through stimulation of the MAPK pathway in cultured granulosa cells of DHEA-induced PCOS mice which yet to be investigated.


Assuntos
Colecalciferol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Biogênese de Organelas , Síndrome do Ovário Policístico/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Catalase/genética , Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/genética , Células da Granulosa/efeitos dos fármacos , Humanos , Camundongos , Fatores Nucleares Respiratórios/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética
20.
Biochem Biophys Res Commun ; 524(4): 903-909, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32057366

RESUMO

PURPOSE: The aim of this study was to investigate the cardiac repair effect of human bone marrow mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) after intramyocardial injection in free form or encapsulated within a self-assembling peptide hydrogel modified with SDKP motif, in a rat model of myocardial infarction (MI). METHODS: MSC-EVs were isolated by ultracentrifuge and characterized for physical parameters and surface proteins. Furthermore, cellular uptake and cardioprotective effects of MSC-EVs were evaluated in vitro using neonatal mouse cardiomyocytes (NMCMs). In vivo effects of MSC-EVs on cardiac repair were studied in rat MI model by comparing the vehicle group (injected with PBS), EV group (injected with MSC-EVs) and Gel + EV group (injected with MSC-EVs encapsulated in (RADA)4-SDKP hydrogel) with respect to cardiac function and fibrotic area using echocardiography and Masson's trichrome staining, respectively. Histological sections were assessed by α-SMA and CD68 immunostaining to investigate the angiogenic and anti-inflammatory effects of the MSC-EVs. RESULTS: We observed the uptake of MSC-EVs into NMCMs which led to NMCMs protection against H2O2-induced oxidative stress by substantial reduction of apoptosis. In myocardial infarcted rats, cardiac function was improved after myocardial injection of MSC-EVs alone or in conjunction with (RADA)4-SDKP hydrogel. This functional restoration coincided with promotion of angiogenesis and decrement of fibrosis and inflammation. CONCLUSION: These data demonstrated that MSC-EVs can be used alone as a potent therapeutic agent for improvement of myocardial infarction.


Assuntos
Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/química , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Peptídeos/administração & dosagem , Actinas/genética , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Expressão Gênica , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Peróxido de Hidrogênio/farmacologia , Injeções Intramusculares , Células-Tronco Mesenquimais/citologia , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Cultura Primária de Células , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...