Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Pharm Bull ; 13(4): 736-746, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38022800

RESUMO

Purpose: Exosomes are natural nanoparticles that participate in intercellular communication through molecular transport. Recently, due to their membrane vesicular structure and surface proteins, exosomes have been used extensively in the research field of drug delivery. Osteoporosis is an inflammation in which the cellular balance of bone tissue is disturbed that reduces bone density and making bone prone to abnormal fractures with small amount of force. Utilizing estrogen is one of the main therapeutic strategies for osteoporosis. Despite the positive effects of estrogen on bone tissue, changes in the natural estrogen levels of the body can cause a number of diseases such as different types of cancer. Therefore, designing a therapeutic system which controls more accurate tissue targeting of estrogen seems to be a rational and promising practical approach. Methods: In this study, bone marrow mesenchymal stem cells (BMMSCs)-derived exosomes were loaded by estradiol using two different methods of drug loading, namely incubation and sonication methods and then the survival effects of the drug loaded exosomes on BMMSCs was investigated. Results: Examination of size, shape, and surface factors of exosomes in different states (pure exosomes and drug-loaded exosomes) showed that the round morphology of exosomes was preserved in all conditions. However, the particles size increased significantly when loaded by sonication method. The increased survival of BMMSCs was noted with estradiol-loaded exosomes when compared to the control group. Conclusion: The results suggest that estradiol-loaded exosomes have potential to be used as nano-drug carriers in the treatment of osteoporosis.

2.
Int J Fertil Steril ; 17(4): 268-275, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37577911

RESUMO

BACKGROUND: In many diabetic patients, spermatogenesis complications are frequent causing infertility problems. This study aimed to demonstrate the effect of Forskolin on male reproductive dysfunction caused by type 2 diabetes. MATERIALS AND METHODS: In this experimental study, type 2 diabetes was induced by a high-fat diet (HFD) for one month and then a low single dose injection (35 mg/kg) of streptozotocin (STZ) in Wistar rats. After 72 hours, rats with more than 200 mg/dl of blood glucose were considered type 2 diabetic rats. Forty rats (200-250 g) were divided into four groups (n=10) including group 1 (G1): rats with normal diet and buffer citrate (STZ solvent) injection, group 2 (G2): control type 2 diabetic rats with HFD and STZ injection, group 3 (G3): type 2 diabetic rats received phosphate buffer saline (PBS) as Forskolin solvent, and group 4 (G4): Forskolin treated diabetic rats (10 mg/kg) for 1 month. RESULTS: In comparison to control group, in diabetic groups (G2 and G3) some parameters are increased significantly: The blood glucose (P=0.00078), testicular malondialdehyde (MDA) level and body weight (P=0.00009) and Bax gene expression (P=0.00007). Unlike, some parameters are decreased significantly: The serum level of testosterone (P=0.0009), testicular superoxide dismutase (SOD, P=0.00007) and glutathione peroxidase (GPX) levels (P=0.00008), sperm concentration (P=0.00008), motility (P=0.00009), normal morphological sperm (P=0.00008) and Bcl-2 gene expression (P=0.00009). However, in Forskolin treated group (G4) the parameters stayed close to control values that was significantly (P=0.00007) higher than in G2 and G3 groups. Therefore, treatment with Forskolin significantly improved these abnormal changes in Forskolin-treated group. CONCLUSION: Our study demonstrates that Forskolin is an effective antidiabetic agent, which significantly improves sperm concentration, testosterone levels, and antioxidant activity in diabetic rats.

3.
Cell Tissue Bank ; 24(3): 663-681, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36622494

RESUMO

Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Gravidez , Feminino , Humanos , Osso e Ossos , Placenta , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular
4.
J Cardiovasc Thorac Res ; 15(4): 244-249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38357560

RESUMO

Introduction: Natural decellularized patches have been developed as the therapeutic platform for the treatment of different diseases, especially cardiovascular disorders. Decellularized scaffolds (as both cell-seeded and cell-free patches) are broadly studied in heart tissue redevelopment in vivo and in vitro. The designed regenerative bio-scaffold must have desirable physicochemical properties including mechanical stiffness for load-bearing, and appropriate anatomical characteristics to mimic the native biological environment properly and facilitate tissue reconstruction. In this context, the current study was designed to investigate rabbit decellularized derma's similarity with human decellularized skin in terms of mechanical properties for cardiac tissue engineering application. Methods: Fifty two rabbit dermal specimens were provided and divided into two groups: the experimental (decellularized) group and the control (group). Similarly, twelve human skin specimens were divided into the experimental (decellularized) and control groups. Initially, the effect of decellularization on the mechanical performance of scaffolds was analyzed. Then, the mechanical strength of decellularized rabbit skin was compared to decellularized human derma by measuring the stress strain and Young's modulus of the samples. Results: The results showed that rabbit decellularized skin has a similar elastic range to human decellularized skin, despite being more elastic (P>0.05). In addition, after decellularization, both rabbit and human skin showed a non-significant decrease in elasticity (P>0.05). It is worth noting that the elasticity reduction in rabbit samples after skin decellularization was lower than in human samples. Conclusion: According to the results of this study and the similarities of rabbit decellularized derm to human skin and its advantages over it, along with the biological complexity of native cardiac ECM, this scaffold can be used as an alternative matrix for tissue-engineered cardiac patches.

5.
Mol Biol Rep ; 49(12): 12203-12218, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36224447

RESUMO

Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won't just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton's Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don't have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes' mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Nanopartículas , Humanos , Medula Óssea , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese
6.
Andrologia ; 54(7): 1605-1617, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35396719

RESUMO

This study aimed to investigate the effects of metformin and forskolin independently and in combinations on the sperm quality parameters and sexual hormones of diabetic male rats. Fifty adult male rats were divided randomly into five identical groups, and diabetes mellitus was induced to the rats, except for the rats in the control group, using a high-fat diet and injection of Streptozotocin. Daily administration of metformin and forskolin independently and in combinations were performed for 8 weeks in different groups. Sperm quality parameters (including sperm count, morphology, sperm motility and Johnson score), testosterone, blood sugar level, Bax to Bcl-2 ratio mRNA expression level and oxidative stress levels were measured and compared between the investigated groups. Treating diabetic rats with metformin and forskolin resulted in significant improvement in sperm quality parameters, increased testosterone levels, reduced oxidative stress in blood and testicular tissue, and decreased blood sugar, and Bax to Bcl-2 ratio level. Although the combination of metformin with forskolin had a higher effect in some parameters such as testosterone levels compared to treatment with metformin or forskolin alone, this combination had not shown a synergistic effect in all the sperm quality parameters. Metformin and forskolin are effective anti-diabetic agents, which significantly improve the sperm quality and sexual hormone levels in diabetic rats. Combining metformin and gorskolin resulted in significantly better testosterone level and antioxidant activity in blood serum without significant effect on sperm quality of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Animais , Glicemia , Colforsina/metabolismo , Colforsina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides , Testosterona , Proteína X Associada a bcl-2/metabolismo
7.
Reprod Biol ; 22(1): 100593, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34906824

RESUMO

Cumulus cell expansion is required for the ovulation of a fertilizable oocyte. Extracellular vesicles (EVs) are bilayer-lipid membrane vesicles that may be found in a variety of bodily fluids and play an important role in biological processes. This study aimed to examine the effects of plasma-derived EVs on cumulus expansion and in vitro maturation (IVM) of the oocyte. EVswere isolated using ultracentrifugation from the plasma of female mice. The morphology and size of EVs were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Western blotting allowed us to identify CD63, CD81, CD9, and HSP70 protein markers of EVs; the expression of the genes related to cumulus cell expansion, including hyaluronan synthase 2 (Has2) and prostaglandinendoperoxide synthase 2 (Ptgs2), were assessed using real-time polymerase chain reaction. Plasma-derived EVs labeled with Dil dye were successfully incorporated with cumulus cells during IVM. Plasma-derived EVs significantly induced cumulus expansion and maturation of oocytes. The percentage of oocytes that reached the MII stage was significantly greater in the EVs treatment group compared with other groups. Although treatment with epidermal growth factor (EGF) significantly increased cumulus expansion in cumulus-oocyte complexes (COCs), the impact was less than that seen with plasma-derived EVs. Furthermore, EVs generated from plasma substantially enhanced Has2 and Ptgs2 mRNA expression in the cumulus-oocyte complex. This research indicates that EVs derived from plasma are capable of promoting cumulus expansion and oocyte maturation.


Assuntos
Células do Cúmulo , Vesículas Extracelulares , Animais , Células do Cúmulo/metabolismo , Feminino , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos , Oogênese , Ovulação
8.
Adv Pharm Bull ; 10(4): 623-629, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33072541

RESUMO

Purpose: Acellular scaffold extracted from extracellular matrix (ECM) have been used for constructive and regenerative medicine. Adipose derived stem cells (ADSCs) can enhance the vascularization capacity of scaffolds. High mobility group box 1 (HMGB1) and stromal derived factor1 (SDF1) are considered as two important factors in vascularization and immunologic system. In this study, the effect of mineral pitch on the proliferation of human ADSCs was evaluated. In addition to HMGB1 and SDF1, factors expression in acellular scaffold was also assessed. Methods: To determine acellular scaffold morphology and the degree of decellularization, hematoxylin & eosin (H&E), 6-diamidino-2-phenylindole (DAPI), and Masson's trichrome staining were applied. The scaffolds were treated with mineral pitch. Also, ADSCs were seeded on the scaffolds, and adhesion of the cells to the scaffolds were assessed using field emission scanning electron microscopy (FE-SEM). In addition, the efficiency of mineral pitch to induce the proliferation of ADSCs on the scaffolds was evaluated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. To measure HMGB1 and SDF1 mRNA expression, real-time polymerase chain reactions (RT-PCR) was used. Results: FE-SEM showed that decellularized matrix possesses similar matrix morphology with a randomly oriented fibrillar structure and interconnecting pores. No toxicity was observed in all treatments, and cell proliferation were supported in scaffolds. The important point is that, the proliferation capacity of ADSCs on Mineral pitch loaded scaffolds significantly increased after 48 h incubation time compared to the unloaded scaffold (P<0.001). Conclusion: The results of this study suggest that mineral pitch has potentials to accelerate proliferation of ADSCs on the acellular scaffolds.

10.
J Cell Physiol ; 235(2): 1556-1567, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31400002

RESUMO

The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Intestino Delgado , Ratos , Ratos Wistar , Regeneração , Ovinos , Resistência à Tração
11.
Adv Pharm Bull ; 9(4): 539-558, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31857958

RESUMO

Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of different transformed cell types. The recent findings concerning tumorigeneses have highlighted the fact that tumors can progress through tight relationships among tumor cells, cellular, and non-cellular components which are present within tumor tissues. In recent years, studies have shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent effects on tumor growth through different conditions and factors such as toll-like receptor priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover, MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto- cell connections and indirect communications through the autocrine, paracrine routes, and tumor microenvironment (TME). Overall, cell-based therapies will hold great promise to provide novel anticancer treatments. However, the application of intact MSCs in cancer treatment can theoretically cause adverse clinical outcomes. It is essential that to extensively analysis the effective factors and conditions in which underlying mechanisms are adopted by MSCs when encounter with cancer. The aim is to review the cellular and molecular mechanisms underlying the dual effects of MSCs followed by the importance of polarization of MSCs through priming of TLRs.

12.
Wounds ; 31(12): 308-315, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31730513

RESUMO

Burn wounds are one of the main causes of skin damage. Based on World Health Organization statistics, almost 300 000 people worldwide die of burns each year. In severe burns, the cells and blood vessels are often injured and the blood supply to the wound is disturbed. Many factors such as oxygenation, infection, aging, hormones, and nutrition potentially can influence burn progression and disrupt repair with unbalanced release of various growth factors and cytokines. Different treatment approaches such as dressings and skin substitutes have been applied to aid wound healing. A thorough understanding of the effective factors on burns can improve wound healing outcomes. This review evaluates articles published on the Scopus, EMBASE, and PubMed databases that attempt to explain the pathophysiology, molecular components, and therapeutic approaches involved in the burn wound healing process.


Assuntos
Queimaduras/terapia , Cicatrização/fisiologia , Bandagens , Queimaduras/fisiopatologia , Progressão da Doença , Humanos , Estresse Oxidativo , Transplante de Pele , Pele Artificial
13.
Int J Biol Macromol ; 139: 760-772, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31400425

RESUMO

Newly, injectable hydrogels have been renowned as promising biomaterials and appropriate candidates for tissue engineering which can be applied for the development of 3-dimensional cell culture models. Hydrogels have in situ formability that allows an actual and homogeneous drugs/cells encapsulation, and suitable for in vivo surgical operation in a minimally invasive way, causing less discomfort for patients. A wide and varied range of methods has been applied to design hydrogels-based biological macromolecules via chemical gelling techniques, such as photo-polymerization, and enzyme-catalyzed reactions due to the biocompatibility and feasible processing of in situ formation of hydrogels and the easy implantation through in situ injection of hydrogels-based biological macromolecules. This present review covers the current advances in the development of injectable hydrogels through enzymatically and photo-crosslinking procedures for tissue engineering. The characteristics and applications of natural and synthetic base materials used in hydrogel generation are also reviewed with an outline on biomedical considerations.


Assuntos
Reagentes de Ligações Cruzadas/química , Enzimas/química , Hidrogéis/administração & dosagem , Fotoquímica/métodos , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Catálise , Técnicas de Cultura de Células , Sobrevivência Celular , Condrócitos/citologia , Colágeno/química , Combinação de Medicamentos , Humanos , Hidrogéis/química , Injeções , Laminina/química , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Polímeros/química , Proteoglicanas/química
14.
Rev Neurosci ; 30(8): 857-868, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026226

RESUMO

Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Esclerose Múltipla/terapia , Medicina Regenerativa/métodos , Cordão Umbilical/citologia , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Nanotecnologia/métodos , Regeneração Nervosa
15.
Tissue Cell ; 57: 49-56, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30947963

RESUMO

In this study, we report the development of a nanofiber polycaprolactone scaffold that can act as a stem cell carrier to induce chondrogenesis and promote cartilage repair in vivo. Infrapatellar fat pads were obtained from sheep knee and the stem cells were isolated and characterized by flow cytometry. Defects were created in sheep knee, two defects received adipose tissue derived stem cells (ASCs)-polycaprolactone construct, second group received polycaprolactone (PCL), the third group was chosen as the ASCs group and the fourth group was control group. Morphological evaluation showed that defects treated with ASCs-scaffold constructs were completely filled with cartilage-like tissue, while other groups revealed the formation of a thin layer of cartilage-like tissue in the defects. Real-Time RT-PCR showed the increase in collagen type 2 mRNA levels, aggrecan and Sox9 in ASCs/PCL groups in comparison with the other groups. Immunofluorescence and toluidine blue staining results showed the protein expression of collagen type 2 and formation of round and polygonal clusters of chondrocytes in ASCS/PCL group. According to our results nanofiber polycaprolactone promoted the chondrogenesis of infrapatellar adipose tissue derived stem cells in vivo and could offer significant promise in the biological functionality of stem cell tissue engineering in clinical practice.


Assuntos
Cartilagem Articular/fisiologia , Condrogênese/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Engenharia Tecidual/métodos , Animais , Nanofibras , Poliésteres , Regeneração , Ovinos , Alicerces Teciduais/química
16.
Adv Pharm Bull ; 8(3): 457-464, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30276142

RESUMO

Purpose: Application of Mummy material for treatment of different diseases such as bone fracture, cutaneous wounds and joint inflammation has been advised since hundred years ago in Persian traditional medicine. Due to the claims of indigenous people and advice of traditional medicine for application of this material in healing of bone fractures, this study has been designed to evaluate whether Mummy material can promote the differentiation of mesenchymal stem cells into osteoblasts and enhance the expression of bone specific genes and proteins. Methods: Adipose derived stem cells (ASCs) at fourth cell passage were divided into control, osteogenesis group (received osteogenic medium), Mummy group (received Mummy at concentration of 500 µg/ml). ASCs in the fourth group were treated with both osteogenic medium and Mummy (500µg/ml). Cells in all groups were harvested on days 7, 14 and 21 days for further evaluation through Real time RT-PCR, Von kossa staining, Immunocytochemistry and flowcytometery. Results: Treatment of ASCs with Mummy at concentration of 500µg/ml promotes the expression level of Osteocalcin, RUNX-2 and ß1-integrin genes in different time points but that of the Osterix did not changed. Furthermore the expression of Osteocalcin protein enhanced significantly in ASCs treated with Mummy detected by Immunocytochemistry and flowcytometery technique compared to the control groups. The results of this study also showed that treatment of ASCs with Mummy resulted in formation of mineral deposits which was evaluated by Von Kossa staining method. Conclusion: Obtained data from this study reveals that Mummy is a potent enhancer for differentiation of ASCs into osteoblasts in in vitro system, probably through increasing the level of bone specific genes and proteins.

17.
Adv Pharm Bull ; 8(2): 283-289, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30023330

RESUMO

Purpose: In Persian traditional medicine, application of Mummy material has been advised since hundred years ago for treatment of different diseases as bone fracture, cutaneous wounds and joint inflammation. Regarding to the claim of indigenous people for application of this material in the treatment of joint inflammation, the present study was designed to evaluate whether Mummy can revoke the inflammatory responses in chondrocytes stimulated with interleukin 1-ß (IL-1ß). Methods: Isolated chondrocytes at the second passage were plated in 50 ml conical tubes at density of 1x106 for pellet culture or were plated in T75 culture flasks as monolayer. Cells in both groups were treated as control (receiving serum free culture medium), negative control (receiving IL-1ß (10ng/ml for 24 hr)) and IL-1ß pre-stimulated cells which treated with Mummy at concentrations of 500 and 1000µg/ml for 72hrs. After 72 hrs, to evaluate whether Mummy can revoke the inflammatory response in chondrocytes, cell in different groups were prepared for investigation of gene expression profile of collagen II, Cox-2, MMP-13, C-Rel and P65 using real-time RT-PCR. Results: Treatment of chondrocytes with IL-1ß (10ng/ml) resulted in a significant increase in expression level of Cox-2, MMP-13, C-Rel and P65 in pellet culture system, while treatment of IL-1ß-stimulated choncrocytes with Mummy at both concentrations of 500 and 1000µg/ml inhibited the expression level of above mentioned genes. Compared to the pellet culture, Mummy did not affect expression level of genes in monolayer condition. Conclusion: The obtained data from this investigation revealed that Mummy can be used as a potent factor for inhibiting the inflammatory responses induced by IL-1ß in chondrocytes probably through inhibition of NF-қB subunits activation.

18.
Adv Pharm Bull ; 8(2): 297-306, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30023332

RESUMO

Purpose: Adipose tissue derived stem cells (ASCs) and chondrocytes are best cells for articular cartilage regeneration. Chondrocyte with peri-cellular matrix (PCM) is called chondron provides ideal microenviroment than chondrocytes. We aimed to evaluate the regenerative effects of intra-articular injection of ASCs co-cultures with chondron in induced osteoarthritis (OA). Methods: ASC, from the peri-renal fat of male rat and chondron from primary newborn rat hyaline cartilage were isolated. ASCs were cultured for at least three passages in vitro. Six weeks after OA induction, rats were randomly distributed in five groups of control, osteoarthritic, ASC, chondron and co-cultured. ASCs (107), chondrons (107) and combination of chondrons and ASCs (107) were injected into intra-articular space of the rat knee. The effect of treatments was evaluated by macroscopic and microscopic examinations. The expression levels of collagen type ΙΙ was studied by immunohistochemistry. Results: Macroscopic appearance of the co-cultured group, showed much enhanced articular cartilage regeneration compared to ASC and chondron groups. H&E showed evidence of repair site of articular surface without erosion and fibrillation versus OA group which showed thin layer of hyaline cartilage over tidemark and spontaneous fibrocartilage formation. Metachromatic regions stained with toluidine blue were larger in treatment groups versus OA group. Strong intensity of type ΙΙ collagen staining was observed in co-culture group compared to other groups. Conclusion: Co-culture of chondrons and ASCs increased articular hyaline cartilage formation and provides a useful tool to improve limitations of each of applied cells in this model.

19.
Adv Pharm Bull ; 8(1): 29-38, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29670836

RESUMO

Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE), cardiac specific promoter, internal ribosome entry site (IRES), and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP) was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as 'twin' cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1%) transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

20.
Cell J ; 20(1): 108-112, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29308626

RESUMO

OBJECTIVES: Infertility is a worldwide health problem which affects approximately 15% of sexually active couples. One of the factors influencing the fertility is melatonin. Also, protection of oocytes and embryos from oxidative stress inducing chemicals in the culture medium is important. The aim of the present study was to investigate if melatonin could regulate hyaluronan synthase-2 (HAS2) and Progesterone receptor (PGR) expressions in the cumulus cells of mice oocytes and provide an in vitro fertilization (IVF) approach. MATERIALS AND METHODS: In this experimental study, for this purpose, 30 adult female mice and 15 adult male mice were used. The female mice were superovulated using 10 U of pregnant mare serum gonadotropin (PMSG) and 24 hours later, 10 U of human chorionic gonadotropin (hCG) were injected. Next, cumulus oocyte complexes (COCs) were collected from the oviducts of the female mice by using a matrix-flushing method. The cumulus cells were cultured with melatonin 10 µM for 6 hours and for real-time reverse transcription-polymerase chain reaction (RT-PCR) was used for evaluation of HAS2 and PGR expression levels. The fertilization rate was evaluated through IVF. All the data were analyzed using a t test. RESULTS: The results of this study showed that HAS2 and PGR expressions in the cumulus cells of the mice receiving melatonin increased in comparison to the control groups. Also, IVF results revealed an enhancement in fertilization rate in the experimental groups compared to the control groups. CONCLUSIONS: To improve the oocyte quality and provide new approaches for infertility treatment, administration of melatonin as an antioxidant, showed promising results. Thus, it is concluded that fertility outcomes can be improved by melatonin it enhances PGR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...