Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 165881, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517736

RESUMO

This study investigated transport pathways and photochemical formation responsible for ozone exceedances during the September 2021 deployment of the Tracking Aerosol Convection Interactions ExpeRiment/Air Quality (TRACER-AQ) campaign in Houston, Texas. We focused on two ozone episodes, September 6th-September 11th ("Episode 1") and September 23rd-September 26th ("Episode 2"), when the maximum daily eight-hour average (MDA8) ozone at surface monitors exceeded 70 ppbv. Long-range transport patterns of air masses during these episodes were from the central/northern US. High-resolution (4 km resolution) trajectory analysis with FLEXible PARTicle (FLEXPART) dispersion model revealed local recirculation of air masses and the accumulation of pollutants across Houston contribute to the ozone exceedances. Comprehensive Air Quality Model with extensions (CAMx) driven by 1.33-km resolution meteorology from the Weather Research and Forecast (WRF) tool simulated elevated ozone production rates during ozone episodes across the Houston metropolitan area, with ozone production hotspots mostly over Houston city and industrial districts of the Houston Ship Channel (HSC). The regional increase in ozone production rates was due to the transport of VOC-rich air masses (via northerly flows) that brought ozone precursors to the region, which ultimately caused a transition in the ozone formation tendency from generally VOC-limited to NOx-limited conditions. However, the city of Houston and the HSC remained in a VOC-limited regime because of local NOx emissions that, to some extent, preponderated the impact of transported VOCs. While approximately 37 % of the elevated ozone production was attributed to local photochemistry, the remaining ∼63 % increase in ozone production was due to the transported ozone to the region during episodes, bringing ozone to the Houston region and contributing to ozone exceedances. The outcomes of this study illustrated the synergy between transport and ozone production, both long-range and local scale, which resulted in ozone exceedances in Houston.

2.
Environ Pollut ; 308: 119647, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718047

RESUMO

This study investigated the long-term variations in ambient levels of surface ozone, volatile organic compounds (VOCs), and nitrogen oxides (NOx) within the Houston-Galveston-Brazoria (HGB) region. Analysis of ozone levels revealed an overall reduction in the maximum daily 8-h average ozone (MDA8 O3) from 2000 to 2019 (April-October) with an average rate of âˆ¼ -0.48 ppb/yr across HGB. With a few exceptions, the MDA8 O3 reduction rates were more pronounced for the monitoring sites closer to the Houston Ship Channel (HSC). Meanwhile, ambient levels of NOx and most VOC species (across the three representative sites as Houston Bayland Park, Haden Road, and Lynchburg Ferry) decreased significantly within the same investigation period, reflecting the impact of emission reductions. The positive matrix factorization (PMF) model applied to the mentioned sites identified regional background ozone, petrochemical emissions, engine combustion, natural gas/fuel evaporation, and solvent/painting/rubber industries as the major sources of MDA8 O3. The regional background ozone was the predominant source, accounting for 59-70% of MDA8 O3 across the three sites. Regarding the local anthropogenic emissions, natural gas/fuel evaporation was the largest contributor (19.5 ± 6.1%) to MDA8 O3 at Houston Bayland Park, whereas petrochemical facilities (10.9 ± 4.9%) and solvent/painting/rubber industries (18.1 ± 9.5%) were the largest factor at Haden Road and Lynchburg Ferry, respectively. Notable reductions were found in the contributions of petrochemical emissions, engine combustion, and natural gas/fuel evaporation to MDA8 O3 within 2000-2019, but an increasing trend was revealed in the role of solvent/painting/rubber industries on MDA8 O3 most probably due to the enhanced demand for their products. Results of this study corroborated the success of emission control policies in limiting ozone precursors and provided useful details for prioritizing emission reduction policies to further reduce ozone pollution in the HGB.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Gás Natural/análise , Ozônio/análise , Borracha/análise , Solventes/análise , Compostos Orgânicos Voláteis/análise
3.
Sci Total Environ ; 758: 143582, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213922

RESUMO

The goal of this study was to characterize changes in components and toxicological properties of PM2.5 during the nationwide 2019-Coronavirus (COVID-19) lockdown restrictions in Milan, Italy. Time-integrated PM2.5 filters were collected at a residential site in Milan metropolitan area from April 11th to June 3rd at 2020, encompassing full-lockdown (FL), the followed partial-lockdown (PL2), and full-relaxation (FR) periods of COVID-19 restrictions. The collected filters were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), individual organic species (e.g., polycyclic aromatic hydrocarbons (PAHs), and levoglucosan), and metals. According to online data, nitrogen dioxide (NO2) and benzene (C6H6) levels significantly decreased during the entire COVID-19 period compared to the same time span in 2019, mainly due to the government-backed shutdowns and curtailed road traffic. Similarly, with a few exceptions, surrogates of tailpipe emissions (e.g., traffic-associated PAHs) as well as re-suspended road dust (e.g., Fe, Mn, Cu, Cr, and Ti) were relatively lower during FL and PL2 periods in comparison with year 2019, whereas an increasing trend in mass concentration of mentioned species was observed from FL to PL2 and FR phases due to the gradual lifting of lockdown restrictions. In contrast, comparable concentrations of ambient PM2.5 and black carbon (BC) between lockdown period and the same time span in 2019 were attributed to the interplay between decreased road traffic and elevated domestic biomass burning as a result of adopted stay-home strategies. Finally, the curtailed road traffic during FL and PL2 periods led to ~25% drop in the PM2.5 oxidative potential (measured via 2',7'-dichlorodihydrofluorescein (DCFH) and dithiothreitol (DTT) assays) with respect to the FR period as well as the same time span in 2019. The results of this study provide insights into the changes in components and oxidative potential of PM2.5 in the absence of road traffic during COVID-19 restrictions.


Assuntos
Poluentes Atmosféricos , COVID-19 , Coronavirus , Poluentes Atmosféricos/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Itália , Pandemias , Material Particulado/análise , Políticas , SARS-CoV-2 , Emissões de Veículos/análise
4.
Toxics ; 8(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228016

RESUMO

Epidemiological studies have linked exposure to ambient particulate matter (PM) with gastrointestinal (GI) diseases. Ambient ultrafine particles (UFP) are the redox-active sub-fraction of PM2.5, harboring elemental and polycyclic aromatic hydrocarbons from urban environmental sources including diesel and gasoline exhausts. The gut-vascular barrier (GVB) regulates paracellular trafficking and systemic dissemination of ingested microbes and toxins. Here, we posit that acute UFP ingestion disrupts the integrity of the intestinal barrier by modulating intestinal Notch activation. Using zebrafish embryos, we performed micro-gavage with the fluorescein isothiocynate (FITC)-conjugated dextran (FD10, 10 kDa) to assess the disruption of GVB integrity upon UFP exposure. Following micro-gavage, FD10 retained in the embryonic GI system, migrated through the cloaca. Conversely, co-gavaging UFP increased transmigration of FD10 across the intestinal barrier, and FD10 fluorescence occurred in the venous capillary plexus. Ingestion of UFP further impaired the mid-intestine morphology. We performed micro-angiogram of FD10 to corroborate acute UFP-mediated disruption of GVB. Transient genetic and pharmacologic manipulations of global Notch activity suggested Notch regulation of the GVB. Overall, our integration of a genetically tractable embryonic zebrafish and micro-gavage technique provided epigenetic insights underlying ambient UFP ingestion disrupts the GVB.

5.
Sci Total Environ ; 705: 135902, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31837867

RESUMO

In this study, we investigated aerosol chemical composition, spectral properties of aerosol extracts, and source contributions to the aerosol light-absorbing brown carbon (BrC) in central Los Angeles from July 2018 to March 2019, during warm and cold seasons. Spectrophotometric measurements (water and methanol extracts; 200 < λ < 1100) and chemical analyses were performed on collected particulate matter (PM), and relationships of BrC light absorption (Abs365) to source tracer chemical species were evaluated. Mass absorption efficiency (MAE) of both water and methanol extracted solutions exhibited an increasing trend from warm period to cold season, with an annual average value of 0.61 ± 0.22 m2.g-1 and 1.38 ± 0.89 m2.g-1, respectively. Principal component analysis (PCA) were coupled with multiple linear regression (MLR) to identify and quantify sources of BrC light absorption in each of the seasons. Our finding documented fossil fuel combustion as the dominant source of BrC light absorption during warm season, with relative contribution of 38% to total BrC light absorption, followed by (secondary organic aerosol) SOA (30%) and biomass burning (12%). In contrast, biomass burning was the major source of BrC during the cold season (53%), while fossil fuel combustion and SOA contributed to 18% and 12% of BrC, respectively. Significantly higher contribution of biomass burning to BrC during the cold season suggested that residential heating activities (wood burning) play a major role in increased BrC concentrations. Previously collected Aethalometer model data documented fossil fuel combustion as the dominant contributing source to >90% of BC throughout the year. Finally, the solar radiation absorption ratio of BrC to elemental carbon (EC) in the ultraviolet range (300-400 nm) was maximum during the cold season with the annual corresponding values of 13-25% and 17-29% for water- and methanol-soluble BrC, respectively; which provides further evidence of the important effect of BrC light absorption on atmospheric radiative balance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...