Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Sci Adv ; 10(10): eadl1122, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446892

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß cell autoimmunity and type 1 diabetes. We investigated how CVB affects human ß cells and anti-CVB T cell responses. ß cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with ß cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.


Assuntos
Infecções por Coxsackievirus , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Linfócitos T CD8-Positivos , Anticorpos , Epitopos , Peptídeos , Antivirais
2.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38536815

RESUMO

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Assuntos
Colesterol , Retículo Endoplasmático , Secreção de Insulina , Insulina , Antígenos de Histocompatibilidade Menor , Receptores de Esteroides , Vesículas Secretórias , Retículo Endoplasmático/metabolismo , Vesículas Secretórias/metabolismo , Animais , Colesterol/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Camundongos , Humanos , Cálcio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Glucose/metabolismo
3.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421874

RESUMO

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulina/metabolismo , Proteômica , Lipidômica , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Exocitose , Vesículas Secretórias/metabolismo , Grânulos Citoplasmáticos/metabolismo
4.
Nat Protoc ; 19(5): 1436-1466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424188

RESUMO

Volume electron microscopy is the method of choice for the in situ interrogation of cellular ultrastructure at the nanometer scale, and with the increase in large raw image datasets generated, improving computational strategies for image segmentation and spatial analysis is necessary. Here we describe a practical and annotation-efficient pipeline for organelle-specific segmentation, spatial analysis and visualization of large volume electron microscopy datasets using freely available, user-friendly software tools that can be run on a single standard workstation. The procedures are aimed at researchers in the life sciences with modest computational expertise, who use volume electron microscopy and need to generate three-dimensional (3D) segmentation labels for different types of cell organelles while minimizing manual annotation efforts, to analyze the spatial interactions between organelle instances and to visualize the 3D segmentation results. We provide detailed guidelines for choosing well-suited segmentation tools for specific cell organelles, and to bridge compatibility issues between freely available open-source tools, we distribute the critical steps as easily installable Album solutions for deep learning segmentation, spatial analysis and 3D rendering. Our detailed description can serve as a reference for similar projects requiring particular strategies for single- or multiple-organelle analysis, which can be achieved with computational resources commonly available to single-user setups.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica , Software , Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Organelas/ultraestrutura , Análise Espacial , Processamento de Imagem Assistida por Computador/métodos , Humanos , Microscopia Eletrônica de Volume
5.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662376

RESUMO

Coxsackievirus B (CVB) infection of pancreatic ß cells is associated with ß-cell autoimmunity. We investigated how CVB impacts human ß cells and anti-CVB T-cell responses. ß cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the ß-cell antigen GAD. Infected ß cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.

6.
Lancet Diabetes Endocrinol ; 11(11): 798-810, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769677

RESUMO

BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , Redução de Peso , Peso Corporal , Glucose , Estilo de Vida
7.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524103

RESUMO

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Assuntos
Doenças Metabólicas , Viroses , Humanos , Relevância Clínica , Viroses/complicações , Doenças Metabólicas/epidemiologia , Saúde Pública
8.
Protein Sci ; 32(6): e4649, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37159024

RESUMO

ICA512/PTPRN is a receptor tyrosine-like phosphatase implicated in the biogenesis and turnover of the insulin secretory granules (SGs) in pancreatic islet beta cells. Previously we found biophysical evidence that its luminal RESP18 homology domain (RESP18HD) forms a biomolecular condensate and interacts with insulin in vitro at close-to-neutral pH, that is, in conditions resembling those present in the early secretory pathway. Here we provide further evidence for the relevance of these findings by showing that at pH 6.8 RESP18HD interacts also with proinsulin-the physiological insulin precursor found in the early secretory pathway and the major luminal cargo of ß-cell nascent SGs. Our light scattering analyses indicate that RESP18HD and proinsulin, but also insulin, populate nanocondensates ranging in size from 15 to 300 nm and 10e2 to 10e6 molecules. Co-condensation of RESP18HD with proinsulin/insulin transforms the initial nanocondensates into microcondensates (size >1 µm). The intrinsic tendency of proinsulin to self-condensate implies that, in the ER, a chaperoning mechanism must arrest its spontaneous intermolecular condensation to allow for proper intramolecular folding. These data further suggest that proinsulin is an early driver of insulin SG biogenesis, in a process in which its co-condensation with RESP18HD participates in their phase separation from other secretory proteins in transit through the same compartments but destined to other routes. Through the cytosolic tail of ICA512, proinsulin co-condensation with RESP18HD may further orchestrate the recruitment of cytosolic factors involved in membrane budding and fission of transport vesicles and nascent SGs.


Assuntos
Insulina , Proinsulina , Insulina/química , Proinsulina/análise , Proinsulina/química , Proinsulina/metabolismo , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/análise , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo
9.
Diabetes Res Clin Pract ; 199: 110636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940795

RESUMO

AIMS: We aimed to compare the concentrations of GLP-1, glucagon and GIP (established regulators of glucose homeostasis) and glicentin (emerging new metabolic marker)during an OGTT in patients with normal glucose tolerance (NGT), prediabetes and diabetes at onset, and one-year before, when all had prediabetes. METHODS: GLP-1, glucagon, GIP and glicentin concentrations were measured and compared with markers of body composition, insulin sensitivity and ß-cell function at a 5-timepoint OGTT in 125 subjects (30 diabetes, 65 prediabetes, 30 NGT) and in 106 of them one-year before, when all had prediabetes. RESULTS: At baseline, when all subjects were in prediabetic state, hormonal levels did not differ between groups. One year later, patients progressing to diabetes had lower postprandial increases of glicentin and GLP-1, lower postprandial decrease of glucagon, and higher levels of fasting GIP compared to patients regressing to NGT. Changes in glicentin and GLP-1 AUC within this year correlated negatively with changes in Glucose AUC of OGTT and with changes in markers of beta cell function. CONCLUSION: Incretins, glucagon and glicentin profiles in prediabetic state cannot predict future glycemic traits, but prediabetes progressing to diabetes is accompanied by deterioration of postprandial increases of GLP-1 and glicentin.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Estado Pré-Diabético , Humanos , Glucagon , Insulina/metabolismo , Glicentina , Estudos Transversais , Teste de Tolerância a Glucose , Glicemia/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Polipeptídeo Inibidor Gástrico
10.
Nat Metab ; 4(8): 970-977, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953581

RESUMO

Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.


Assuntos
Diabetes Mellitus Tipo 2 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Transplante das Ilhotas Pancreáticas/métodos , Doadores Vivos , Pâncreas
11.
Life Sci Alliance ; 5(12)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948367

RESUMO

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 2/genética , Glucagon/genética , Glucagon/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Serpina E2/metabolismo
12.
Front Med (Lausanne) ; 9: 875430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646955

RESUMO

Advanced age, followed by male sex, by far poses the greatest risk for severe COVID-19. An unresolved question is the extent to which modifiable comorbidities increase the risk of COVID-19-related mortality among younger patients, in whom COVID-19-related hospitalization strongly increased in 2021. A total of 3,163 patients with SARS-COV-2 diagnosis in the Lean European Open Survey on SARS-CoV-2-Infected Patients (LEOSS) cohort were studied. LEOSS is a European non-interventional multi-center cohort study established in March 2020 to investigate the epidemiology and clinical course of SARS-CoV-2 infection. Data from hospitalized patients and those who received ambulatory care, with a positive SARS-CoV-2 test, were included in the study. An additive effect of obesity, diabetes and hypertension on the risk of mortality was observed, which was particularly strong in young and middle-aged patients. Compared to young and middle-aged (18-55 years) patients without obesity, diabetes and hypertension (non-obese and metabolically healthy; n = 593), young and middle-aged adult patients with all three risk parameters (obese and metabolically unhealthy; n = 31) had a similar adjusted increased risk of mortality [OR 7.42 (95% CI 1.55-27.3)] as older (56-75 years) non-obese and metabolically healthy patients [n = 339; OR 8.21 (95% CI 4.10-18.3)]. Furthermore, increased CRP levels explained part of the elevated risk of COVID-19-related mortality with age, specifically in the absence of obesity and impaired metabolic health. In conclusion, the modifiable risk factors obesity, diabetes and hypertension increase the risk of COVID-19-related mortality in young and middle-aged patients to the level of risk observed in advanced age.

13.
Cell Rep ; 39(6): 110793, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545054

RESUMO

Ribosomopathies constitute a range of disorders associated with defective protein synthesis mainly affecting hematopoietic stem cells (HSCs) and erythroid development. Here, we demonstrate that deletion of poly-pyrimidine-tract-binding protein 1 (PTBP1) in the hematopoietic compartment leads to the development of a ribosomopathy-like condition. Specifically, loss of PTBP1 is associated with decreases in HSC self-renewal, erythroid differentiation, and protein synthesis. Consistent with its function as a splicing regulator, PTBP1 deficiency results in splicing defects in hundreds of genes, and we demonstrate that the up-regulation of a specific isoform of CDC42 partly mimics the protein-synthesis defect associated with loss of PTBP1. Furthermore, PTBP1 deficiency is associated with a marked defect in ribosome biogenesis and a selective reduction in the translation of mRNAs encoding ribosomal proteins. Collectively, this work identifies PTBP1 as a key integrator of ribosomal functions and highlights the broad functional repertoire of RNA-binding proteins.


Assuntos
Células-Tronco Hematopoéticas , Ribossomos , Eritrócitos/metabolismo , Eritropoese , Células-Tronco Hematopoéticas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
14.
J Clin Med ; 11(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160113

RESUMO

BACKGROUND: Chronic pancreatitis (CP) often leads to recurrent pain as well as exocrine and/or endocrine pancreatic insufficiency. This study aimed to investigate the effect of pancreatic head resections on glucose metabolism in patients with CP. METHODS: Patients who underwent pylorus-preserving pancreaticoduodenectomy (PPPD), Whipple procedure (cPD), or duodenum-preserving pancreatic head resection (DPPHR) for CP between January 2011 and December 2020 were retrospectively analyzed with regard to markers of pancreatic endocrine function including steady-state beta cell function (%B), insulin resistance (IR), and insulin sensitivity (%S) according to the updated Homeostasis Model Assessment (HOMA2). RESULTS: Out of 141 pancreatic resections for CP, 43 cases including 31 PPPD, 2 cPD and 10 DPPHR, met the inclusion criteria. Preoperatively, six patients (14%) were normoglycemic (NG), 10 patients (23.2%) had impaired glucose tolerance (IGT) and 27 patients (62.8%) had diabetes mellitus (DM). In each subgroup, no significant changes were observed for HOMA2-%B (NG: p = 0.57; IGT: p = 0.38; DM: p = 0.1), HOMA2-IR (NG: p = 0.41; IGT: p = 0.61; DM: p = 0.18) or HOMA2-%S (NG: p = 0.44; IGT: p = 0.52; DM: p = 0.51) 3 and 12 months after surgery, respectively. CONCLUSION: Pancreatic head resections for CP, including DPPHR and pancreatoduodenectomies, do not significantly affect glucose metabolism within a follow-up period of 12 months.

15.
BMJ Open ; 12(2): e058268, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168986

RESUMO

INTRODUCTION: Even well-treated gestational diabetes mellitus (GDM) might still have impact on long-term health of the mother and her offspring, although this relationship has not yet been conclusively studied. Using in-depth phenotyping of the mother and her offspring, we aim to elucidate the relationship of maternal hyperglycaemia during pregnancy and adequate treatment, and its impact on the long-term health of both mother and child. METHODS: The multicentre PREG study, a prospective cohort study, is designed to metabolically and phenotypically characterise women with a 75-g five-point oral glucose tolerance test (OGTT) during, and repeatedly after pregnancy. Outcome measures are maternal glycaemia during OGTTs, birth outcome and the health and growth development of the offspring. The children of the study participants are followed up until adulthood with developmental tests and metabolic and epigenetic phenotyping in the PREG Offspring study. A total of 800 women (600 with GDM, 200 controls) will be recruited. ETHICS AND DISSEMINATION: The study protocol has been approved by all local ethics committees. Results will be disseminated via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: The PREG study and the PREG Offspring study are registered with Clinical Trials (ClinicalTrials.gov identifiers: NCT04270578, NCT04722900).


Assuntos
Diabetes Gestacional , Adulto , Glicemia/metabolismo , Criança , Diabetes Gestacional/terapia , Feminino , Teste de Tolerância a Glucose , Humanos , Masculino , Mães , Gravidez , Estudos Prospectivos
16.
Nat Rev Endocrinol ; 18(1): 43-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34671102

RESUMO

Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received considerable attention, pancreatic fat has become an important area of research throughout the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic fat, multi-echo Dixon MRI is currently the most developed method. Initial studies have shown associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat accumulation are discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Estado Pré-Diabético , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Estado Pré-Diabético/metabolismo
18.
Nature ; 599(7883): 147-151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616045

RESUMO

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Assuntos
Conjuntos de Dados como Assunto , Disseminação de Informação , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Animais , Linhagem Celular , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Feminino , Complexo de Golgi/ultraestrutura , Humanos , Interfase , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Varredura/normas , Microtúbulos/ultraestrutura , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Publicação de Acesso Aberto , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/ultraestrutura , Ribossomos/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura
19.
Mol Metab ; 54: 101355, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634522

RESUMO

OBJECTIVES: To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic ß-cell deregulations or defects in the function of insulin target tissues. METHODS: We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. RESULTS: We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the ß-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. CONCLUSION: TAGs emerge as biomarkers of a liver-to-ß-cell axis that links hepatic ß-oxidation to ß-cell functional mass and insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Triglicerídeos/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Células Cultivadas , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Triglicerídeos/sangue
20.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508004

RESUMO

ß cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of ß cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.


Assuntos
Animais Geneticamente Modificados/metabolismo , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Exocitose , Glucose/metabolismo , Secreção de Insulina , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...