Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1280314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023880

RESUMO

Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.

2.
Front Plant Sci ; 11: 323, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265970

RESUMO

Salinity stress affects global food producing areas by limiting both crop growth and yield. Attempts to develop salinity-tolerant rice varieties have had limited success due to the complexity of the salinity tolerance trait, high variation in the stress response and a lack of available donors for candidate genes for cultivated rice. As a result, finding suitable donors of genes and traits for salinity tolerance has become a major bottleneck in breeding for salinity tolerant crops. Twenty-two wild Oryza relatives have been recognized as important genetic resources for quantitatively inherited traits such as resistance and/or tolerance to abiotic and biotic stresses. In this review, we discuss the challenges and opportunities of such an approach by critically analyzing evolutionary, ecological, genetic, and physiological aspects of Oryza species. We argue that the strategy of rice breeding for better Na+ exclusion employed for the last few decades has reached a plateau and cannot deliver any further improvement in salinity tolerance in this species. This calls for a paradigm shift in rice breeding and more efforts toward targeting mechanisms of the tissue tolerance and a better utilization of the potential of wild rice where such traits are already present. We summarize the differences in salinity stress adaptation amongst cultivated and wild Oryza relatives and identify several key traits that should be targeted in future breeding programs. This includes: (1) efficient sequestration of Na+ in mesophyll cell vacuoles, with a strong emphasis on control of tonoplast leak channels; (2) more efficient control of xylem ion loading; (3) efficient cytosolic K+ retention in both root and leaf mesophyll cells; and (4) incorporating Na+ sequestration in trichrome. We conclude that while amongst all wild relatives, O. rufipogon is arguably a best source of germplasm at the moment, genes and traits from the wild relatives, O. coarctata, O. latifolia, and O. alta, should be targeted in future genetic programs to develop salt tolerant cultivated rice.

3.
Physiol Plant ; 159(1): 59-73, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27513992

RESUMO

High night temperature (HNT) is a major constraint to sustaining global rice production under future climate. Physiological and biochemical mechanisms were elucidated for HNT-induced grain yield and quality loss in rice. Contrasting rice cultivars (N22, tolerant; Gharib, susceptible; IR64, high yielding with superior grain quality) were tested under control (23°C) and HNT (29°C) using unique field-based tents from panicle initiation till physiological maturity. HNT affected 1000 grain weight, grain yield, grain chalk and amylose content in Gharib and IR64. HNT increased night respiration (Rn) accounted for higher carbon losses during post-flowering phase. Gharib and IR64 recorded 16 and 9% yield reduction with a 63 and 35% increase in average post-flowering Rn under HNT, respectively. HNT altered sugar accumulation in the rachis and spikelets across the cultivars with Gharib and IR64 recording higher sugar accumulation in the rachis. HNT reduced panicle starch content in Gharib (22%) and IR64 (11%) at physiological maturity, but not in the tolerant N22. At the enzymatic level, HNT reduced sink strength with lower cell wall invertase and sucrose synthase activity in Gharib and IR64, which affected starch accumulation in the developing grain, thereby reducing grain weight and quality. Interestingly, N22 recorded lower Rn-mediated carbon losses and minimum impact on sink strength under HNT. Mechanistic responses identified will facilitate crop models to precisely estimate HNT-induced damage under future warming scenarios.


Assuntos
Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Biomassa , Respiração Celular , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Glucosiltransferases/metabolismo , Temperatura Alta , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sintase do Amido/metabolismo , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...