Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Geriatr Psychiatry ; 39(4): e6090, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629845

RESUMO

INTRODUCTION: Neurological conditions such as Alzheimer's disease and stroke represent a substantial health burden to the world's ageing population. Cerebrovascular dysfunction is a key contributor to these conditions, affecting an individual's risk profile, age of onset, and severity of neurological disease. Recent data shows that early-life events, such as maternal health during pregnancy, birth weight and exposure to environmental toxins can 'prime' the vascular system for later changes. With age, blood vessels can become less flexible and more prone to damage. This can lead to reduced blood flow to the brain, which is associated with cognitive decline and an increased risk of stroke and other cerebrovascular diseases. These in turn increase the risk of vascular dementia and Alzheimer's disease. OBJECTIVES: We aim to explore how early life factors influence cerebrovascular health, ageing and disease. METHODS: We have reviewed recently published literature from epidemiological studies, clinical cases and basic research which explore mechanisms that contribute to cerebrovascular and blood-brain barrier dysfunction, with a particularly focus on those that assess contribution of early-life events or vascular priming to subsequent injury. RESULTS: Perinatal events have been linked to acute cerebrovascular dysfunction and long-term structural reorganisation. Systemic disease throughout the lifetime that produce inflammatory or oxidative stress may further sensitise the cerebrovasculature to disease and contribute to neurodegeneration. CONCLUSIONS: By identifying these early-life determinants and understanding their mechanisms, scientists aim to develop strategies for preventing or mitigating cerebrovascular ageing-related issues.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Demência Vascular , Acidente Vascular Cerebral , Gravidez , Feminino , Humanos , Encéfalo , Demência Vascular/complicações , Envelhecimento , Acidente Vascular Cerebral/complicações , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/complicações
2.
Nat Metab ; 5(11): 1969-1985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884694

RESUMO

T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Transporte Biológico/fisiologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Diferenciação Celular , Linfócitos T CD8-Positivos/metabolismo
3.
Cells ; 12(11)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37296568

RESUMO

In Italy, from January 2021, the Ministry of Health indicated a vaccination plan against COVID for frail patients and physicians based on a three-dose scheme. However, conflicting results have been reported on which biomarkers permit immunization assessment. We used several laboratory approaches (i.e., antibodies serum levels, flow cytometry analysis, and cytokines release by stimulated cells) to investigate the immune response in a cohort of 53 family pediatricians (FPs) at different times after the vaccine. We observed that the BNT162b2-mRNA vaccine induced a significant increase of specific antibodies after the third (booster) dose; however, the antibody titer was not predictive of the risk of developing the infection in the six months following the booster dose. The antigen stimulation of PBMC cells from subjects vaccinated with the third booster jab induced the increase of the activated T cells (i.e., CD4+ CD154+); the frequency of CD4+ CD154+ TNF-α+ cells, as well as the TNF-α secretion, was not modified, while we observed a trend of increase of IFN-γ secretion. Interestingly, the level of CD8+ IFN-γ+ (independently from antibody titer) was significantly increased after the third dose and predicts the risk of developing the infection in the six months following the booster jab. Such results may impact also other virus vaccinations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa , COVID-19/prevenção & controle , SARS-CoV-2 , Pediatras , Itália , Imunidade
4.
J Exp Clin Cancer Res ; 42(1): 69, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945054

RESUMO

BACKGROUND: Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic variables and nutrient culture conditions. METHODS: 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines. RESULTS: We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines. CONCLUSIONS: Our results show that anchorage-independent survival and growth of cancer cells are supported by changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental conditions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC and ENO2 in cancer metastasis.


Assuntos
Neoplasias da Mama , Multiômica , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Glucose , Lactatos , Nutrientes , Esferoides Celulares , Microambiente Tumoral
5.
Life (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36556373

RESUMO

Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.

6.
Circulation ; 146(25): 1930-1945, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36417924

RESUMO

BACKGROUND: Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS: In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS: We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS: Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.


Assuntos
Doenças Autoimunes , Cardiomiopatias , Miocardite , Humanos , Camundongos , Animais , Autoimunidade , Células T de Memória , Miocardite/etiologia , Miocárdio , Cardiomiopatias/complicações , Miosinas Cardíacas , Inflamação/complicações
7.
Front Neurosci ; 16: 854050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620671

RESUMO

Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.

8.
FASEB J ; 36(1): e22107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939700

RESUMO

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Assuntos
Barreira Hematoencefálica/imunologia , Colagenases/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inibidores Teciduais de Metaloproteinases/imunologia , Animais , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia
9.
Microbiome ; 9(1): 235, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836554

RESUMO

BACKGROUND: Communication between the gut microbiota and the brain is primarily mediated via soluble microbe-derived metabolites, but the details of this pathway remain poorly defined. Methylamines produced by microbial metabolism of dietary choline and L-carnitine have received attention due to their proposed association with vascular disease, but their effects upon the cerebrovascular circulation have hitherto not been studied. RESULTS: Here, we use an integrated in vitro/in vivo approach to show that physiologically relevant concentrations of the dietary methylamine trimethylamine N-oxide (TMAO) enhanced blood-brain barrier (BBB) integrity and protected it from inflammatory insult, acting through the tight junction regulator annexin A1. In contrast, the TMAO precursor trimethylamine (TMA) impaired BBB function and disrupted tight junction integrity. Moreover, we show that long-term exposure to TMAO protects murine cognitive function from inflammatory challenge, acting to limit astrocyte and microglial reactivity in a brain region-specific manner. CONCLUSION: Our findings demonstrate the mechanisms through which microbiome-associated methylamines directly interact with the mammalian BBB, with consequences for cerebrovascular and cognitive function. Video abstract.


Assuntos
Barreira Hematoencefálica , Microbiota , Animais , Cognição , Mamíferos/metabolismo , Metilaminas/metabolismo , Camundongos
10.
Front Immunol ; 12: 738511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603320

RESUMO

Alzheimer's Disease (AD) is a progressive neurodegenerative disease strongly associated with increasing age. Neuroinflammation and the accumulation of amyloid protein are amongst the hallmarks of this disease and most translational research to date has focused on targeting these two processes. However, the exact etiology of AD remains to be fully elucidated. When compared alongside, the immune response in AD closely resembles the central nervous system (CNS) immune changes seen in elderly individuals. It is possible that AD is a pathological consequence of an aged immune system secondary to chronic stimulation by a previous or ongoing insult. Pathological changes like amyloid accumulation and neuronal cell death may reflect this process of immunosenescence as the CNS immune system fails to maintain homeostasis in the CNS. It is likely that future treatments designed to modulate the aged immune system may prove beneficial in altering the disease course. The development of new tests for appropriate biomarkers would also be essential in screening for patients most likely to benefit from such treatments.


Assuntos
Envelhecimento/imunologia , Doença de Alzheimer/imunologia , Encéfalo/imunologia , Imunossenescência , Neuroimunomodulação , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Vacinas contra Alzheimer/uso terapêutico , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Imunoterapia , Degeneração Neural
11.
Front Immunol ; 12: 701275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349763

RESUMO

Metabolic endotoxemia has been suggested to play a role in the pathophysiology of metaflammation, insulin-resistance and ultimately type-2 diabetes mellitus (T2DM). The role of endogenous antimicrobial peptides (AMPs), such as the cathelicidin LL-37, in T2DM is unknown. We report here for the first time that patients with T2DM compared to healthy volunteers have elevated plasma levels of LL-37. In a reverse-translational approach, we have investigated the effects of the AMP, peptide 19-2.5, in a murine model of high-fat diet (HFD)-induced insulin-resistance, steatohepatitis and T2DM. HFD-fed mice for 12 weeks caused obesity, an impairment in glycemic regulations, hypercholesterolemia, microalbuminuria and steatohepatitis, all of which were attenuated by Peptide 19-2.5. The liver steatosis caused by feeding mice a HFD resulted in the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-ĸB) (phosphorylation of inhibitor of kappa beta kinase (IKK)α/ß, IκBα, translocation of p65 to the nucleus), expression of NF-ĸB-dependent protein inducible nitric oxide synthase (iNOS) and activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, all of which were reduced by Peptide 19-2.5. Feeding mice, a HFD also resulted in an enhanced expression of the lipid scavenger receptor cluster of differentiation 36 (CD36) secondary to activation of extracellular signal-regulated kinases (ERK)1/2, both of which were abolished by Peptide 19-2.5. Taken together, these results demonstrate that the AMP, Peptide 19-2.5 reduces insulin-resistance, steatohepatitis and proteinuria. These effects are, at least in part, due to prevention of the expression of CD36 and may provide further evidence for a role of metabolic endotoxemia in the pathogenesis of metaflammation and ultimately T2DM. The observed increase in the levels of the endogenous AMP LL-37 in patients with T2DM may serve to limit the severity of the disease.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Inflamação , Lipopolissacarídeos/antagonistas & inibidores , Animais , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/etiologia , Endotoxemia/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Catelicidinas
12.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34148071

RESUMO

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Anexina A1/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade Capilar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
13.
Nat Commun ; 11(1): 3595, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681081

RESUMO

Endothelial barrier (EB) breaching is a frequent event during inflammation, and it is followed by the rapid recovery of microvascular integrity. The molecular mechanisms of EB recovery are poorly understood. Triggering of MHC molecules by migrating T-cells is a minimal signal capable of inducing endothelial contraction and transient microvascular leakage. Using this model, we show that EB recovery requires a CD31 receptor-induced, robust glycolytic response sustaining junction re-annealing. Mechanistically, this response involves src-homology phosphatase activation leading to Akt-mediated nuclear exclusion of FoxO1 and concomitant ß-catenin translocation to the nucleus, collectively leading to cMyc transcription. CD31 signals also sustain mitochondrial respiration, however this pathway does not contribute to junction remodeling. We further show that pathologic microvascular leakage in CD31-deficient mice can be corrected by enhancing the glycolytic flux via pharmacological Akt or AMPK activation, thus providing a molecular platform for the therapeutic control of EB response.


Assuntos
Células Endoteliais/metabolismo , Microvasos/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , beta Catenina/genética , beta Catenina/metabolismo
14.
Brain Behav Immun ; 83: 248-259, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669344

RESUMO

Chemotherapy-induced neuropathic pain is a dose-limiting side effect of many cancer therapies due to their propensity to accumulate in peripheral nerves, which is facilitated by the permeability of the blood-nerve barrier. Preclinically, the chemotherapy agent vincristine (VCR) activates endothelial cells in the murine peripheral nervous system and in doing so allows the infiltration of monocytes into nerve tissue where they orchestrate the development of VCR-induced nociceptive hypersensitivity. In this study we demonstrate that VCR also activates endothelial cells in the murine central nervous system, increases paracellular permeability and decreases trans endothelial resistance. In in vivo imaging studies in mice, VCR administration results in trafficking of inflammatory monocytes through the endothelium. Indeed, VCR treatment affects the integrity of the blood-spinal cord-barrier as indicated by Evans Blue extravasation, disrupts tight junction coupling and is accompanied by the presence of monocytes in the spinal cord. Such inflammatory monocytes (Iba-1+ CCR2+ Ly6C+ TMEM119- cells) that infiltrate the spinal cord also express the pro-nociceptive cysteine protease Cathepsin S. Systemic treatment with a CNS-penetrant, but not a peripherally-restricted, inhibitor of Cathepsin S prevents the development of VCR-induced hypersensitivity, suggesting that infiltrating monocytes play a functional role in sensitising spinal cord nociceptive neurons. Our findings guide us towards a better understanding of central mechanisms of pain associated with VCR treatment and thus pave the way for the development of innovative antinociceptive strategies.


Assuntos
Permeabilidade Capilar , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neuralgia/fisiopatologia , Medula Espinal/irrigação sanguínea , Animais , Células Endoteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente
15.
Aging Cell ; 19(2): e13067, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31788930

RESUMO

The susceptibility of human CD4+ and CD8+ T cells to senesce differs, with CD8+ T cells acquiring an immunosenescent phenotype faster than the CD4+ T cell compartment. We show here that it is the inherent difference in mitochondrial content that drives this phenotype, with senescent human CD4+ T cells displaying a higher mitochondrial mass. The loss of mitochondria in the senescent human CD8+ T cells has knock-on consequences for nutrient usage, metabolism and function. Senescent CD4+ T cells uptake more lipid and glucose than their CD8+ counterparts, leading to a greater metabolic versatility engaging either an oxidative or a glycolytic metabolism. The enhanced metabolic advantage of senescent CD4+ T cells allows for more proliferation and migration than observed in the senescent CD8+ subset. Mitochondrial dysfunction has been linked to both cellular senescence and aging; however, it is still unclear whether mitochondria play a causal role in senescence. Our data show that reducing mitochondrial function in human CD4+ T cells, through the addition of low-dose rotenone, causes the generation of a CD4+ T cell with a CD8+ -like phenotype. Therefore, we wish to propose that it is the inherent metabolic stability that governs the susceptibility to an immunosenescent phenotype.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Senescência Celular/imunologia , Imunossenescência/fisiologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Glucose/metabolismo , Glicólise/imunologia , Humanos , Antígenos Comuns de Leucócito/sangue , Antígenos Comuns de Leucócito/metabolismo , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Rotenona/farmacologia
16.
FASEB J ; 33(12): 13998-14009, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618599

RESUMO

Immune changes occur in experimental and clinical epilepsy. Here, we tested the hypothesis that during epileptogenesis and spontaneous recurrent seizures (SRS) an impairment of the endogenous anti-inflammatory pathway glucocorticoid receptor (GR)-annexin A1 (ANXA1) occurs. By administrating exogenous ANXA1, we studied whether pharmacological potentiation of the anti-inflammatory response modifies seizure activity and pathophysiology. We used an in vivo model of temporal lobe epilepsy based on intrahippocampal kainic acid (KA) injection. Video-electroencephalography, molecular biology analyses on brain and peripheral blood samples, and pharmacological investigations were performed in this model. Human epileptic cortices presenting type II focal cortical dysplasia (IIa and b), hippocampi with or without hippocampal sclerosis (HS), and available controls were used to study ANXA1 expression. A decrease of phosphorylated (phospho-) GR and phospho-GR/tot-GR protein expression occurred in the hippocampus during epileptogenesis. Downstream to GR, the anti-inflammatory protein ANXA1 remained at baseline levels while inflammation installed and endured. In peripheral blood, ANXA1 and corticosterone levels showed no significant modifications during disease progression except for an early and transient increase poststatus epilepticus. These results indicate inadequate ANXA1 engagement over time and in these experimental conditions. By analyzing human brain specimens, we found that where significant inflammation exists, the pattern of ANXA1 immunoreactivity was abnormal because the typical perivascular ANXA1 immunoreactivity was reduced. We next asked whether potentiation of the endogenous anti-inflammatory mechanism by ANXA1 administration modifies the disease pathophysiology. Although with varying efficacy, administration of exogenous ANXA1 somewhat reduced the time spent in seizure activity as compared to saline. These results indicate that the anti-inflammatory GR-ANXA1 pathway is defective during experimental seizure progression. The prospect of pharmacologically restoring or potentiating this endogenous anti-inflammatory mechanism as an add-on therapeutic strategy for specific forms of epilepsy is proposed.-Zub, E., Canet, G., Garbelli, R., Blaquiere, M., Rossini, L., Pastori, C., Sheikh, M., Reutelingsperger, C., Klement, W., de Bock, F., Audinat, E., Givalois, L., Solito, E., Marchi, N. The GR-ANXA1 pathway is a pathological player and a candidate target in epilepsy.


Assuntos
Anexina A1/metabolismo , Epilepsia , Receptores de Glucocorticoides/metabolismo , Animais , Anexina A1/genética , Contagem de Células Sanguíneas , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipocampo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Ácido Caínico/administração & dosagem , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética
17.
Cell Biochem Funct ; 37(7): 560-568, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479167

RESUMO

Annexin A1 (AnxA1) is a protein secreted by phagocytic cells which plays a pivotal role on the resolution of inflammation by enhancing phagocytosis carried out by phagocytes. Which factors and intracellular mechanisms are linked to such actions exerted by AnxA1 are yet to be completely understood. In order to investigate such, BV2 microglial cells were transfected with plasmids aimed at down-modulating AnxA1 expression and also treated with exogenous recombinant rAnxA1; gene and protein expression of proliferated-activated receptor γ (PPARγ) and CD36, STAT6 phosphorylation and phagocytosis of apoptotic neurons were investigated. Down-modulating AnxA1 in BV2 cells impaired gene and protein expression of PPARγ, effects reversed by treatment with recombinant AnxA1 (rAnxA1). Lower levels of CD36 were also verified in AnxA1 down-modulated BV2 cells. AnxA1-mediated phagocytosis of apoptotic cells was abrogated due to blockade of PPARγ activation, and in AnxA1 down-modulated cells exogenous AnxA1 failed to exert any effects on phagocytosis. Lower levels of STAT6/pSTAT6 in AnxA1 down-modulated BV2 cells suggest the involvement of this transcription factor with PPARγ and CD36 synthesis and actions. Data here shown suggest that there is a probable connection between AnxA1, PPARγ, and CD36, which must all act in association in order for efferocytosis to occur properly. AnxA1-mediated phosphorylation of STAT6 is probably involved with intracellular pathways involving PPARγ and CD36 actions. These data evidence that PPARγ/CD36 play a role on AnxA1-mediated efferocytosis in microglial cells. SIGNIFICANCE OF THE STUDY: The findings of this work provide evidence that the glucocorticoid-mediated protein annexin A1 modulates PPARγ expression and that PPARγ is important for annexin A1-mediated efferocytosis. Only recently the interaction between these two factors has begun to be explored, and knowledge on associated cell mechanisms are still scarce. Elucidating how annexin A1 and PPARγ interact with one another provides basis for further research aimed at understanding molecular pathways and cell signaling events involved with these factors, expanding existing knowledge on the anti-inflammatory effects of such factors.


Assuntos
Anexina A1/metabolismo , Microglia/metabolismo , PPAR gama/metabolismo , Fagocitose , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Microglia/citologia , PPAR gama/genética , Ratos
18.
J Immunol ; 203(7): 1753-1765, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462505

RESUMO

Chronic neuroinflammation is a key pathological hallmark of multiple sclerosis (MS) that suggests that resolution of inflammation by specialized proresolving molecules is dysregulated in the disease. Annexin A1 (ANXA1) is a protein induced by glucocorticoids that facilitates resolution of inflammation through several mechanisms that include an inhibition of leukocyte recruitment and activation. In this study, we investigated the ability of ANXA1 to influence T cell effector function in relapsing/remitting MS (RRMS), an autoimmune disease sustained by proinflammatory Th1/Th17 cells. Circulating expression levels of ANXA1 in naive-to-treatment RRMS subjects inversely correlated with disease score and progression. At the cellular level, there was an impaired ANXA1 production by CD4+CD25- conventional T and CD4+RORγt+ T (Th17) cells from RRMS subjects that associated with an increased migratory capacity in an in vitro model of blood brain barrier. Mechanistically, ANXA1 impaired monocyte maturation secondarily to STAT3 hyperactivation and potently reduced T cell activation, proliferation, and glycolysis. Together, these findings identify impaired disease resolution pathways in RRMS caused by dysregulated ANXA1 expression that could represent new potential therapeutic targets in RRMS.


Assuntos
Anexina A1/imunologia , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Proliferação de Células , Feminino , Glicólise/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Esclerose Múltipla/patologia , Fator de Transcrição STAT3/imunologia , Índice de Gravidade de Doença , Células Th1/patologia , Células Th17/patologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-31297095

RESUMO

Local production of estrogen rapidly follows brain tissue injury, but the role this hormone plays in regulating the response to neural damage or in the modulation of mediators regulating inflammation is in many ways unclear. Using the murine BV2 microglia model as well as primary microglia from wild-type and annexin A1 (AnxA1) null mice, we have identified two related mechanisms whereby estradiol can modulate microglial behavior in a receptor specific fashion. Firstly, estradiol, via estrogen receptor ß (ERß), enhanced the phagocytic clearance of apoptotic cells, acting through increased production and release of the protein AnxA1. Secondly, stimulation of either ERß or the G protein coupled estrogen receptor GPER promoted the adoption of an anti-inflammatory/pro-resolving phenotype, an action similarly mediated through AnxA1. Together, these data suggest the hypothesis that locally produced estrogen acts through AnxA1 to exert powerful pro-resolving actions, controlling and limiting brain inflammation and ultimately protecting this highly vulnerable organ. Given the high degree of receptor selectivity in evoking these responses, we suggest that the use of selective estrogen receptor ligands may hold therapeutic promise in the treatment of neuroinflammation, avoiding unwanted generalized effects.

20.
Front Immunol ; 10: 938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114582

RESUMO

Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.


Assuntos
Anexina A1/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Lipoxinas/imunologia , Doenças Vasculares/imunologia , Doença de Addison/tratamento farmacológico , Doença de Addison/imunologia , Doença de Addison/patologia , Animais , Síndrome de Cushing/tratamento farmacológico , Síndrome de Cushing/imunologia , Síndrome de Cushing/patologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/imunologia , Diabetes Mellitus/patologia , Glucocorticoides/imunologia , Glucocorticoides/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...