Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 8(1): 29, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843670

RESUMO

BACKGROUND: Radiopharmaceuticals capable of targeting the fibroblast activation protein have become widely utilized in the research realm as well as show great promise to be commercialized; with [68Ga]Ga-FAPI-46 being one of the most widely utilized. Until now the synthesis has relied on generator-produced gallium-68. Here we present a developed method to utilize liquid-target cyclotron-produced gallium-68 to prepare [68Ga]Ga-FAPI-46. RESULTS: A fully-automated manufacturing process for [68Ga]Ga-FAPI-46 was developed starting with the 68Zn[p,n]68Ga cyclotron bombardment to provide [68Ga]GaCl3, automated purification of the [68Ga]GaCl3, chelation with the precursor, and final formulation/purification. The activity levels produced were sufficient for multiple clinical research doses, and the final product met all release criteria. Furthermore, the process consistently provides < 2% of Ga-66 and Ga-67 at the 4-h expiry, meeting the Ph. Eur. CONCLUSIONS: The automated radiosynthesis on the GE FASTlab 2 module purifies the cyclotron output into [68Ga]GaCl3, performs the labeling, formulates the product, and sterilizes the product while transferring to the final vial. Production of > 40 mCi (> 1480 MBq) of [68Ga]Ga-FAPI-46 in excellent radiochemical yield was achieved with all batches meeting release criteria.

2.
Nat Protoc ; 17(4): 980-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246649

RESUMO

[68Ga]Ga-PSMA-11, a urea-based peptidomimetic, is a diagnostic radiopharmaceutical for positron emission tomography (PET) imaging that targets the prostate-specific membrane antigen (PSMA). The recent Food and Drug Administration approval of [68Ga]Ga-PSMA-11 for PET imaging of patients with prostate cancer, expected follow-up approval of companion radiotherapeutics (e.g., [177Lu]Lu-PSMA-617, [225Ac]Ac-PSMA-617) and large prostate cancer patient volumes requiring access are poised to create an unprecedented demand for [68Ga]Ga-PSMA-11 in nuclear medicine clinics around the world. Meeting this global demand is going to require a variety of synthesis methods compatible with 68Ga eluted from a generator or produced on a cyclotron. To address this urgent need in the PET radiochemistry community, herein we report detailed protocols for the synthesis of [68Ga]Ga-PSMA-11, (also known as HBED-CC, Glu-urea-Lys(Ahx)-HBED-CC and PSMA-HBED-CC) using both generator-eluted and cyclotron-produced 68Ga and contrast the pros and cons of each method. The radiosyntheses are automated and have been validated for human use at two sites (University of Michigan (UM), United States; Royal Prince Alfred Hospital (RPA), Australia) and used to produce [68Ga]Ga-PSMA-11 for patient use in good activity yields (single generator, 0.52 GBq (14 mCi); dual generators, 1.04-1.57 GBq (28-42 mCi); cyclotron method (single target), 1.47-1.89 GBq (40-51 mCi); cyclotron method (dual target), 3.63 GBq (98 mCi)) and high radiochemical purity (99%) (UM, n = 645; RPA, n > 600). Both methods are appropriate for clinical production but, in the long term, the method employing cyclotron-produced 68Ga is the most promising for meeting high patient volumes. Quality control testing (visual inspection, pH, radiochemical purity and identity, radionuclidic purity and identity, sterile filter integrity, bacterial endotoxin content, sterility, stability) confirmed doses are suitable for clinical use, and there is no difference in clinical prostate cancer PET imaging using [68Ga]Ga-PSMA-11 prepared using the two production methods.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Ciclotrons , Ácido Edético , Radioisótopos de Gálio/química , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Ureia
3.
EJNMMI Radiopharm Chem ; 5(1): 25, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180205

RESUMO

PURPOSE: To optimize the direct production of 68Ga on a cyclotron, via the 68Zn(p,n)68Ga reaction using a liquid cyclotron target. We Investigated the yield of cyclotron-produced 68Ga, extraction of [68Ga]GaCl3 and subsequent [68Ga]Ga-PSMA-11 labeling using an automated synthesis module. METHODS: Irradiations of a 1.0 M solution of [68Zn]Zn(NO3)2 in dilute (0.2-0.3 M) HNO3 were conducted using GE PETtrace cyclotrons and GE 68Ga liquid targets. The proton beam energy was degraded to a nominal 14.3 MeV to minimize the co-production of 67Ga through the 68Zn(p,2n)67Ga reaction without unduly compromising 68Ga yields. We also evaluated the effects of varying beam times (50-75 min) and beam currents (27-40 µA). Crude 68Ga production was measured. The extraction of [68Ga]GaCl3 was performed using a 2 column solid phase method on the GE FASTlab Developer platform. Extracted [68Ga]GaCl3 was used to label [68Ga]Ga-PSMA-11 that was intended for clinical use. RESULTS: The decay corrected yield of 68Ga at EOB was typically > 3.7 GBq (100 mCi) for a 60 min beam, with irradiations of [68Zn]Zn(NO3)2 at 0.3 M HNO3. Target/chemistry performance was more consistent when compared with 0.2 M HNO3. Radionuclidic purity of 68Ga was typically > 99.8% at EOB and met the requirements specified in the European Pharmacopoeia (< 2% combined 66/67Ga) for a practical clinical product shelf-life. The activity yield of [68Ga]GaCl3 was typically > 50% (~ 1.85 GBq, 50 mCi); yields improved as processes were optimized. Labeling yields for [68Ga]Ga-PSMA-11 were near quantitative (~ 1.67 GBq, 45 mCi) at EOS. Cyclotron produced [68Ga]Ga-PSMA-11 underwent full quality control, stability and sterility testing, and was implemented for human use at the University of Michigan as an Investigational New Drug through the US FDA and also at the Royal Prince Alfred Hospital (RPA). CONCLUSION: Direct cyclotron irradiation of a liquid target provides clinically relevant quantities of [68Ga]Ga-PSMA-11 and is a viable alternative to traditional 68Ge/68Ga generators.

4.
J Org Chem ; 84(9): 5863-5871, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835118

RESUMO

A new, operationally simple approach is presented to access arynes and their fluoride-activated precursors based on Ru-catalyzed C-H silylation of arylboronates. Chromatographic purification may be deferred until after aryne capture, rendering the arylboronates de facto precursors. Access to various new arynes and their derivatives is demonstrated, including, for the first time, those based on a 2,3-carbazolyne and 2,3-fluorenyne core, which pave the way for novel derivatizations of motifs relevant to materials chemistry.

5.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 10): 1190-2, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26594403

RESUMO

In the title compound, [Ru(C10H14)(C12H9N3)(CH3CN)][SbF6]2, the ruthenium(II) cation is η (6)-coordinated by the para-cymene ligand with a Ru-centroid(η (6)-benzene) distance of 1.746 (2) Å. Furthermore, ruthenium coordinations to the C and N atoms of the pyrimidyl indole ligand are found to be 1.986 (4) and 2.082 (3) Å, respectively. The typical piano-stool coordination environment is saturated with an aceto-nitrile solvent mol-ecule with a Ru-N distance of 2.044 (3) Å. The indolyl ligand is protonated at the C3 position with the N=C imine bond length appropriate to that of related 3H-indole-based complexes. In the crystal, the complex cation is linked to the SbF6 (-) ions through weak C-H⋯F hydrogen bonds.

6.
Chemistry ; 21(14): 5380-6, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25689052

RESUMO

The Ru-catalysed C2-H arylation of indoles and pyrroles by using boronic acids under oxidative conditions is reported. This reaction can be applied to tryptophan derivatives and tolerates a wide range of functional groups on both coupling partners, including bromides and iodides, which can be further derivatised selectively. New indole-based ruthenacyclic complexes are described and investigated as possible intermediates in the reaction. Mechanistic studies suggest the on-cycle intermediates do not possess a para-cymene ligand and that the on-cycle metalation occurs through an electrophilic attack by the Ru centre.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...