Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542330

RESUMO

Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.


Assuntos
Angiogênese , Células Endoteliais , Animais , Camundongos , Células Endoteliais/metabolismo , Membro Posterior/irrigação sanguínea , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética
2.
Med J Aust ; 219(7): 316-324, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37524539

RESUMO

OBJECTIVE: To describe the frequency of hospitalisation and in-hospital death following moderate to severe traumatic brain injury (TBI) in Australia, both overall and by patient demographic characteristics and the nature and severity of the injury. DESIGN, SETTING: Cross-sectional study; analysis of Australia New Zealand Trauma Registry data. PARTICIPANTS: People with moderate to severe TBI (Abbreviated Injury Score [head] greater than 2) who were admitted to or died in one of the twenty-three major Australian trauma services that contributed data to the ATR throughout the study period, 1 July 2015 - 30 June 2020. MAJOR OUTCOME MEASURES: Primary outcome: number of hospitalisations with moderate to severe TBI; secondary outcome: number of deaths in hospital following moderate to severe TBI. RESULTS: During 2015-20, 16 350 people were hospitalised with moderate to severe TBI (mean, 3270 per year), of whom 2437 died in hospital (14.9%; mean, 487 per year). The mean age at admission was 50.5 years (standard deviation [SD], 26.1 years), and 11 644 patients were male (71.2%); the mean age of people who died in hospital was 60.4 years (SD, 25.2 years), and 1686 deaths were of male patients (69.2%). The overall number of hospitalisations did not change during 2015-20 (per year: incidence rate ratio [IRR], 1.00; 95% confidence interval [CI], 0.99-1.02) and death (IRR, 1.00; 95% CI, 0.97-1.03). CONCLUSION: Injury prevention and trauma care interventions for people with moderate to severe TBI in Australia reduced neither the incidence of the condition nor the associated in-hospital mortality during 2015-20. More effective care strategies are required to reduce the burden of TBI, particularly among younger men.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Mortalidade Hospitalar , Austrália/epidemiologia , Estudos Transversais , Lesões Encefálicas Traumáticas/epidemiologia , Hospitalização , Sistema de Registros , Análise de Dados
3.
Brain Res ; 1804: 148265, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709021

RESUMO

Visual snow syndrome (VSS) is a neurological disorder primarily affecting the processing of visual information. Using ocular motor (OM) tasks, we previously demonstrated that participants with VSS exhibit altered saccade profiles consistent with visual attention impairments. We subsequently proposed that OM assessments may provide an objective measure of dysfunction in these individuals. However, VSS participants also frequently report significant psychiatric symptoms. Given that that these symptoms have been shown previously to influence performance on OM tasks, the objective of this study was to investigate whether psychiatric symptoms (specifically: depression, anxiety, fatigue, sleep difficulties, and depersonalization) influence the OM metrics found to differ in VSS. Sixty-one VSS participants completed a battery of four OM tasks and a series of online questionnaires assessing psychiatric symptomology. We revealed no significant relationship between psychiatric symptoms and OM metrics on any of the tasks, demonstrating that in participants with VSS, differences in OM behaviour are a feature of the disorder. This supports the utility of OM assessment in characterising deficit in VSS, whether supporting a diagnosis or monitoring future treatment efficacy.


Assuntos
Movimentos Oculares , Transtornos Mentais , Humanos , Transtornos da Visão/diagnóstico , Movimentos Sacádicos , Comorbidade
4.
Hum Brain Mapp ; 44(5): 1868-1875, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478470

RESUMO

Visual snow syndrome (VSS) is a neurological disorder characterized by a range of continuous visual disturbances. Little is known about the functional pathological mechanisms underlying VSS and their effect on brain network topology, studied using high-resolution resting-state (RS) 7 T MRI. Forty VSS patients and 60 healthy controls underwent RS MRI. Functional connectivity matrices were calculated, and global efficiency (network integration), modularity (network segregation), local efficiency (LE, connectedness neighbors) and eigenvector centrality (significance node in network) were derived using a dynamic approach (temporal fluctuations during acquisition). Network measures were compared between groups, with regions of significant difference correlated with known aberrant ocular motor VSS metrics (shortened latencies and higher number of inhibitory errors) in VSS patients. Lastly, nodal co-modularity, a binary measure of node pairs belonging to the same module, was studied. VSS patients had lower modularity, supramarginal centrality and LE dynamics of multiple (sub)cortical regions, centered around occipital and parietal lobules. In VSS patients, lateral occipital cortex LE dynamics correlated positively with shortened prosaccade latencies (p = .041, r = .353). In VSS patients, occipital, parietal, and motor nodes belonged more often to the same module and demonstrated lower nodal co-modularity with temporal and frontal regions. This study revealed reduced dynamic variation in modularity and local efficiency strength in the VSS brain, suggesting that brain network dynamics are less variable in terms of segregation and local clustering. Further investigation of these changes could inform our understanding of the pathogenesis of the disorder and potentially lead to treatment strategies.


Assuntos
Encéfalo , Transtornos da Visão , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Lobo Occipital , Lobo Parietal
5.
Brain Commun ; 4(4): fcac164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35974797

RESUMO

Visual snow syndrome is a neurological condition characterized by continuous visual disturbance and a range of non-visual symptoms, including tinnitus and migraine. Little is known about the pathological mechanisms underlying visual snow syndrome. Here, we assessed brain morphometry and microstructure in visual snow syndrome patients using high-resolution structural and quantitative MRI. Forty visual snow syndrome patients (22 with migraine) and 43 controls underwent 7-Tesla MRI (MP2RAGE, 0.75 mm isotropic resolution). Volumetric and quantitative T1 values were extracted for white and grey matter regions and compared between groups. Where regions were significantly different between groups (false discovery rate corrected for multiple comparisons), post hoc comparisons were examined between patients with and without migraine. For visual snow syndrome patients, significant MRI variables were correlated with clinical severity (number of visual symptoms, perceived visual snow intensity, disruptiveness, fatigue and quality of life) and psychiatric symptoms prevalent in visual snow syndrome (depression, anxiety and depersonalization). Finally, cortical regions and individual thalamic nuclei were studied. Compared with controls, visual snow syndrome patients demonstrated a trend towards larger brain and white matter volumes and significantly lower T1 values for the entire cortex (P < 0.001), thalamus (P = 0.001) and pallidum (P = 0.001). For the patient group, thalamic T1 correlated with number of visual symptoms (P = 0.019, r = 0.390) and perceived disruptiveness of visual snow (P = 0.010, r = 0.424). These correlations did not survive multiple comparison corrections. As for specificity in visual snow syndrome group, T1 changes were most evident in caudal regions (occipital cortices) followed by parietal, temporal and prefrontal cortices. T1 values differed between groups for most individual thalamic nuclei. No differences were revealed between patients with and without migraine. In visual snow syndrome patients, we observed no changes in morphometry, instead widespread changes in grey matter microstructure, which followed a caudal-rostral pattern and affected the occipital cortices most profoundly. Migraine did not appear to independently affect these changes. Lower T1 values may potentially result from higher neurite density, myelination or increased iron levels in the visual snow syndrome brain. Further investigation of these changes may enhance our understanding of the pathogenesis of visual snow syndrome, ultimately leading to new treatment strategies.

6.
Front Neurol ; 13: 878609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599738

RESUMO

Background: Hallucinogen persisting perception disorder (HPPD) is characterized by the re-emergence of perceptual symptoms experienced during acute hallucinogen intoxication following drug cessation. The underlying pathophysiology is poorly understood. We report the clinical characteristics and investigation findings of a series of HPPD cases with a literature review of previous case reports. We draw parallels between the features of HPPD and Visual Snow Syndrome (VSS). Methods: Retrospective case series of 13 patients referred from neuro-ophthalmologists. Literature review with 24 HPPD case reports were identified through database search using the terms "hallucinogenic persisting perception disorder" OR "hallucinogen persisting perception disorder." Results: Lysergic acid diethylamide (LSD), 3,4-Methyl enedioxy methamphetamine (MDMA) and cannabinoid use was common. Cannabinoids and MDMA were mostly used in association with classical hallucinogens. The most frequent symptoms in our patients were visual snow, floaters, palinopsia, photophobia and nyctalopia. In the literature other symptoms included visual hallucinations altered motion perception, palinopsia, tracers and color enhancement. Ophthalmic and neurologic investigations were mostly normal. The majority of patients had ongoing symptoms. Two of our patients fully recovered-one after treatment with benzodiazepine and one without treatment. Twenty-five percent of cases from the literature fully recovered. Conclusions: HPPD presents with heterogeneous visual phenomena on a background of previous classic and non-classic hallucinogen use. Ophthalmic investigations are typically normal. The symptoms of HPPD in our case series overlap with the typical features of Visual Snow Syndrome (VSS). Patients presenting with VSS should be screened for past recreational drug use. The DSM-5 description of HPPD does not include visual snow, nyctalopia, photophobia or floaters. A revision of the diagnostic criteria to include these symptoms may better reflect the typical clinical phenotype. Increased awareness of HPPD as a secondary cause of VSS can avoid extensive investigations. Controlled trials comparing primary and secondary VSS patients are needed to understand the pathophysiology better and optimize treatment for HPPD.

7.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328786

RESUMO

Peripheral arterial disease (PAD) is characterised by accelerated arterial calcification and impairment in angiogenesis. Studies implicate vascular calcification as a contributor to PAD, but the mechanisms remain unclear. We aimed to determine the effect of calcification on ischaemia-driven angiogenesis. Human coronary artery endothelial cells (ECs) were treated with calcification medium (CM: CaCl2 2.7 mM, Na2PO4 2.0 mM) for 24 h and exposed to normoxia (5% CO2) or hypoxia (1.2% O2; 5% CO2 balanced with N2). In normoxia, CM significantly inhibited tubule formation and migration and upregulated calcification markers of ALP, BMP2, and Runx2. CM elevated levels of calcification-protective gene OPG, demonstrating a compensatory mechanism by ECs. CM failed to induce pro-angiogenic regulators VEGFA and HIF-1α in hypoxia and further suppressed the phosphorylation of endothelial nitric oxide synthase (eNOS) that is essential for vascular function. In vivo, osteoprotegerin-deficient mice (OPG-/-), a calcification model, were subjected to hind-limb ischaemia (HLI) surgery. OPG-/- mice displayed elevated serum alkaline phosphatase (ALP) activity compared to wild-type controls. OPG-/- mice experienced striking reductions in blood-flow reperfusion in both 8-week-old and 6-month-old mice post-HLI. This coincided with significant impairment in tissue ischaemia and reduced limb function as assessed by clinical scoring (Tarlov). This study demonstrated for the first time that a pro-calcific environment is detrimental to ischaemia-driven angiogenesis. The degree of calcification in patients with PAD can often be a limiting factor with the use of standard therapies. These highly novel findings require further studies for full elucidation of the mechanisms involved and have implications for the development of therapies to suppress calcification in PAD.


Assuntos
Doença Arterial Periférica , Calcificação Vascular , Animais , Dióxido de Carbono , Células Endoteliais , Humanos , Hipóxia , Isquemia , Camundongos , Neovascularização Patológica
8.
Front Neurol ; 12: 738599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603190

RESUMO

Visual snow syndrome (VSS) is a complex, sensory processing disorder. We have previously shown that visual processing changes manifest in significantly faster eye movements toward a suddenly appearing visual stimulus and difficulty inhibiting an eye movement toward a non-target visual stimulus. We propose that these changes reflect poor attentional control and occur whether attention is directed exogenously by a suddenly appearing event, or endogenously as a function of manipulating expectation surrounding an upcoming event. Irrespective of how attention is captured, competing facilitatory and inhibitory processes prioritise sensory information that is important to us, filtering out that which is irrelevant. A well-known feature of this conflict is the alteration to behaviour that accompanies variation in the temporal relationship between competing sensory events that manipulate facilitatory and inhibitory processes. A classic example of this is the "Inhibition of Return" (IOR) phenomenon that describes the relative slowing of a response to a validly cued location compared to invalidly cued location with longer cue/target intervals. This study explored temporal changes in the allocation of attention using an ocular motor version of Posner's IOR paradigm, manipulating attention exogenously by varying the temporal relationship between a non-predictive visual cue and target stimulus. Forty participants with VSS (20 with migraine) and 20 controls participated. Saccades were generated to both validly cued and invalidly cued targets with 67, 150, 300, and 500 ms cue/target intervals. VSS participants demonstrated delayed onset of IOR. Unlike controls, who exhibited IOR with 300 and 500 ms cue/target intervals, VSS participants only exhibited IOR with 500 ms cue/target intervals. These findings provide further evidence that attention is impacted in VSS, manifesting in a distinct saccadic behavioural profile, and delayed onset of IOR. Whether IOR is perceived as the build-up of an inhibitory bias against returning attention to an already inspected location or a consequence of a stronger attentional orienting response elicited by the cue, our results are consistent with the proposal that in VSS, a shift of attention elicits a stronger increase in saccade-related activity than healthy controls. This work provides a more refined saccadic behavioural profile of VSS that can be interrogated further using sophisticated neuroimaging techniques and may, in combination with other saccadic markers, be used to monitor the efficacy of any future treatments.

9.
Front Pharmacol ; 12: 718679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483928

RESUMO

Diabetes mellitus is estimated to affect up to 700 million people by the year 2045, contributing to an immense health and economic burden. People living with diabetes have a higher risk of developing numerous debilitating vascular complications, leading to an increased need for medical care, a reduced quality of life and increased risk of early death. Current treatments are not satisfactory for many patients who suffer from impaired angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular conditions. These vascular pathologies are characterised by endothelial dysfunction and abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic stimulation of angiogenesis holds promise for the treatment of diabetic vascular complications that stem from impaired ischaemic responses. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis to improve ischaemic complications such as ischaemic heart disease and peripheral artery disease, highlighting the immense unmet need. However, despite significant effort and research, there are no established therapies that directly stimulate angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs (miRNAs) are emerging as powerful targets for multifaceted diseases including diabetes and cardiovascular disease. This review highlights the potential role of microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a specific focus on miR-181c, which we have previously identified as an important angiogenic regulator. Here we summarise the pathways currently known to be regulated by miR-181c, which include the classical angiogenesis pathways that are dysregulated in diabetes, mitochondrial function and axonal guidance, and describe how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of miR-181c across multiple key angiogenic signaling pathways and critical cellular processes highlight its therapeutic potential as a novel target for treating diabetic vascular complications.

10.
Front Neurol ; 12: 703006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393980

RESUMO

Objective: To characterise the psychiatric symptoms of visual snow syndrome (VSS), and determine their relationship to quality of life and severity of visual symptoms. Methods: One hundred twenty-five patients with VSS completed a battery of questionnaires assessing depression/anxiety, dissociative experiences (depersonalisation), sleep quality, fatigue, and quality of life, as well as a structured clinical interview about their visual and sensory symptoms. Results: VSS patients showed high rates of anxiety and depression, depersonalisation, fatigue, and poor sleep, which significantly impacted quality of life. Further, psychiatric symptoms, particularly depersonalisation, were related to increased severity of visual symptoms. The severity/frequency of psychiatric symptoms did not differ significantly due to the presence of migraine, patient sex, or timing of VSS onset (lifelong vs. later onset). Conclusion: Psychiatric symptoms are highly prevalent in patients with VSS and are associated with increased visual symptom severity and reduced quality of life. Importantly, patients with lifelong VSS reported lower levels of distress and milder self-ratings of visual symptoms compared to patients with a later onset, while being equally likely to experience psychiatric symptoms. This suggests that the psychiatric symptoms of VSS are not solely due to distress caused by visual symptoms. While no consistently effective treatments are available for the visual symptomology of VSS, psychiatric symptoms offer an avenue of treatment that is likely to significantly improve patient quality of life and ability to cope with visual symptoms.

11.
Sci Rep ; 11(1): 9607, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953220

RESUMO

Visual snow syndrome (VSS) is a poorly understood neurological disorder that features a range of disabling sensory changes. Visual processing changes revealed previously in VSS appear consistent with poor attentional control, specifically, with difficulty controlling environmentally driven shifts of attention. This study sought to confirm this proposal by determining whether these changes were similarly evident where attention is internally driven. Sixty seven VSS patients and 37 controls completed two saccade tasks: the endogenously cued saccade task and saccadic Simon task. The endogenously cued saccade task correctly (valid trial) or incorrectly (invalid trial) pre-cues a target location using a centrally presented arrow. VSS patients generated significantly shorter saccade latencies for valid trials (p = 0.03), resulting in a greater magnitude cue effect (p = 0.02), i.e. the difference in latency between valid and invalid trials. The saccadic Simon task presents a peripheral cue which may be spatially congruent or incongruent with the subsequent target location. Latencies on this task were comparable for VSS patients and controls, with a normal Simon effect, i.e. shorter latencies for saccades to targets spatially congruent with the preceding cue. On both tasks, VSS patients generated more erroneous saccades than controls towards non-target locations (Endogenously cued saccade task: p = 0.02, saccadic Simon task: p = 0.04). These results demonstrate that cued shifts of attention differentially affect saccade generation in VSS patients. We propose that these changes are not due to impairment of frontally-mediated inhibitory control, but to heightened saccade-related activity in visual regions. These results contribute to a VSS ocular motor signature that may provide clinical utility as well as an objective measure of dysfunction to facilitate future research.


Assuntos
Movimentos Oculares/fisiologia , Transtornos da Visão/fisiopatologia , Percepção Visual/fisiologia , Adolescente , Adulto , Atenção/fisiologia , Medições dos Movimentos Oculares , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Adulto Jovem
12.
Diabetologia ; 64(6): 1402-1411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651121

RESUMO

AIMS/HYPOTHESIS: Diabetes is a major burden on Australia's Indigenous population, with high rates of disease and vascular complications. Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. MicroRNAs (miRNAs) are key players in the regulation of angiogenesis. HDL-cholesterol (HDL-c) levels are inversely associated with the risk of developing diabetic complications and HDL can carry miRNAs. HDL-miRNA profiles differ in disease states and may present as biomarkers with the capacity to act as bioactive signalling molecules. Recent studies have demonstrated that HDL becomes dysfunctional in a diabetic environment, losing its vasculo-protective effects and becoming more pro-atherogenic. We sought to determine whether HDL-associated miRNA profiles and HDL functionality were predictive of the severity of diabetic vascular complications in Australia's Indigenous population. METHODS: HDL was isolated from plasma samples from Indigenous participants without diabetes ('Healthy'), with type 2 diabetes mellitus ('T2DM') and with diabetes-associated macrovascular complications (specifically peripheral artery disease, 'T2DM+Comp'). To assess HDL angiogenic capacity, human coronary artery endothelial cells were treated with PBS, reconstituted HDL (rHDL, positive control) or isolated HDL and then exposed to high-glucose (25 mmol/l) conditions. The expression levels of two anti-angiogenic miRNAs (miR-181c-5p and miR-223-3p) and one pro-angiogenic miRNA (miR-27b-3p) were measured in the HDL fraction, plasma and treated human coronary artery endothelial cells by quantitative real-time PCR. In vitro endothelial tubule formation was assessed using the Matrigel tubulogenesis assay. RESULTS: Strikingly, we found that the levels of the anti-angiogenic miRNA miR-181c-5p were 14-fold higher (1454 ± 1346%) in the HDL from Aboriginal people with diabetic complications compared with both the Healthy (100 ± 121%, p < 0.05) and T2DM (82 ± 77%, p < 0.05) groups. Interestingly, we observed a positive correlation between HDL-associated miR-181c-5p levels and disease severity (p = 0.0020). Under high-glucose conditions, cells treated with rHDL, Healthy HDL and T2DM HDL had increased numbers of tubules (rHDL: 136 ± 8%, p < 0.01; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 124 ± 5%, p < 0.05) and branch points (rHDL: 138 ± 8%, p < 0.001; Healthy HDL: 128 ± 6%, p < 0.01; T2DM HDL: 127 ± 5%, p < 0.01) concomitant with elevations in mRNA levels of the key hypoxia angiogenic transcription factor HIF1A (rHDL: 140 ± 10%, p < 0.01; Healthy HDL: 136 ± 8%, p < 0.01; T2DM HDL: 133 ± 9%, p < 0.05). However, this increase in angiogenic capacity was not observed in cells treated with T2DM + Comp HDL (tubule numbers: 113 ± 6%, p = 0.32; branch points: 113 ± 5%, p = 0.28; HIF1A: 117 ± 6%, p = 0.43), which could be attributed to the increase in cellular miR-181c-5p levels (T2DM + Comp HDL: 136 ± 7% vs PBS: 100 ± 9%, p < 0.05). CONCLUSIONS/INTERPRETATION: In conclusion, HDL from Aboriginal people with diabetic complications had reduced angiogenic capacity. This impairment is associated with an increase in the expression of anti-angiogenic miR-181c-5p. These findings provide the rationale for a new way to better inform clinical diagnosis of disease severity with the potential to incorporate targeted, personalised HDL-miRNA intervention therapies to prevent further development of, or to reverse, diabetic vascular complications in Australian Aboriginal people.


Assuntos
HDL-Colesterol/sangue , Angiopatias Diabéticas/sangue , MicroRNAs/sangue , Austrália , Biomarcadores/sangue , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico
13.
Neurology ; 95(13): e1784-e1791, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32675081

RESUMO

OBJECTIVE: To determine whether changes to cortical processing of visual information can be evaluated objectively using 3 simple ocular motor tasks to measure performance in patients with visual snow syndrome (VSS). METHODS: Sixty-four patients with VSS (32 with migraine and 32 with no migraine) and 23 controls participated. Three ocular motor tasks were included: prosaccade (PS), antisaccade (AS), and interleaved AS-PS tasks. All these tasks have been used extensively in both neurologically healthy and diseased states. RESULTS: We demonstrated that, compared to controls, the VSS group generated significantly shortened PS latencies (p = 0.029) and an increased rate of AS errors (p = 0.001), irrespective of the demands placed on visual processing (i.e., task context). Switch costs, a feature of the AS-PS task, were comparable across groups, and a significant correlation was found between shortened PS latencies and increased AS error rates for patients with VSS (r = 0.404). CONCLUSION: We identified objective and quantifiable measures of visual processing changes in patients with VSS. The absence of any additional switch cost on the AS-PS task in VSS suggests that the PS latency and AS error differences are attributable to a speeded PS response rather than to impaired executive processes more commonly implicated in poorer AS performance. We propose that this combination of latency and error deficits, in conjunction with intact switching performance, will provide a VS behavioral signature that contributes to our understanding of VSS and may assist in determining the efficacy of therapeutic interventions.


Assuntos
Transtornos da Percepção/fisiopatologia , Movimentos Sacádicos/fisiologia , Transtornos da Visão/fisiopatologia , Percepção Visual/fisiologia , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos da Percepção/complicações , Síndrome , Transtornos da Visão/complicações , Adulto Jovem
14.
J Clin Med ; 8(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847094

RESUMO

Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.

15.
Diabetes ; 68(5): 1040-1053, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30765336

RESUMO

Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, reduces lower limb amputations in patients with type 2 diabetes. The mechanism is, however, unknown. In this study, we demonstrate that fenofibrate markedly attenuates diabetes-related impairment of ischemia-mediated angiogenesis. In a murine model of hindlimb ischemia, daily oral fenofibrate treatment restored diabetes-impaired blood flow recovery, foot movement, hindlimb capillary density, vessel diameter, and vascular endothelial growth factor signaling to nondiabetic levels in both wild-type and PPARα-knockout mice, indicating that these fenofibrate effects are largely PPARα independent. In vitro, fenofibric acid (FFA) rescued high glucose-induced (25 mmol/L) impairment of endothelial cell migration, tubulogenesis, and survival in a PPARα-independent manner. Interestingly, fenofibrate in vivo and FFA in vitro reversed high glucose-induced expression of thioredoxin-interacting protein (TXNIP), an exquisitely glucose-inducible gene previously identified as a critical mediator of diabetes-related impairment in neovascularization. Conversely, adenoviral overexpression of TXNIP abrogated the restorative effects of FFA on high glucose-impaired endothelial cell function in vitro, indicating that the effects of FFA are mediated by TXNIP. We conclude that fenofibrate rescues diabetic impairment in ischemia-mediated angiogenesis, in large part, by PPARα-independent regulation of TXNIP. These findings may therefore explain the reduction in amputations seen in patients with diabetes treated with fenofibrate.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fenofibrato/uso terapêutico , Isquemia/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Animais , Proteínas de Transporte/metabolismo , Fenofibrato/análogos & derivados , Glucose/farmacologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/patologia , Isquemia/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos
16.
Sci Rep ; 8(1): 13596, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206364

RESUMO

Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Lipoproteínas HDL/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Humanos , Masculino , Camundongos
17.
Int J Mol Sci ; 19(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958463

RESUMO

Angiogenesis, the process of forming new blood vessels, is crucial in the physiological response to ischemia, though it can be detrimental as part of inflammation and tumorigenesis. We have previously shown that high-density lipoproteins (HDL) modulate angiogenesis in a context-specific manner via distinct classical signalling pathways, enhancing hypoxia-induced angiogenesis while suppressing inflammatory-driven angiogenesis. Whether additional novel targets exist to account for these effects are unknown. A microarray approach identified two novel genes, cyclic-adenosine-monophosphate-response-element-binding protein 3 regulatory factor (CREBRF) and tripartite motif-containing protein 2 (TRIM2) that were upregulated by reconstituted HDL (rHDL). We measured CREBRF and TRIM2 expression in human coronary artery endothelial cells following incubation with rHDL and exposure to either hypoxia or an inflammatory stimulus. We found that CREBRF and TRIM2 mRNA were significantly upregulated by rHDL, particularly in response to its phospholipid component 1-palmitoyl-2-linoleoyl-phosphatidylcholine, however, protein expression was not significantly altered. Knockdown of TRIM2 impaired endothelial cell tubulogenesis in vitro in both hypoxia and inflammation, implying a necessary role in angiogenesis. Furthermore, TRIM2 knockdown attenuated rHDL-induced tubule formation in hypoxia, suggesting that it is important in mediating the pro-angiogenic action of rHDL. Our study has implications for understanding the regulation of angiogenesis in both of these pathophysiological contexts by HDL.


Assuntos
Lipoproteínas HDL/genética , Neovascularização Patológica/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Carcinogênese/genética , Hipóxia Celular/genética , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Inflamação/genética , Inflamação/patologia , Lipoproteínas HDL/farmacologia , Neovascularização Patológica/patologia , Fosfatidilcolinas/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
18.
Clin Exp Metastasis ; 35(7): 649-661, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936575

RESUMO

Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin ß1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.


Assuntos
Etanol/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Sesquiterpenos/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Progressão da Doença , Interações Medicamentosas , Feminino , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica
19.
FASEB J ; 32(6): 2911-2922, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401597

RESUMO

High-density lipoproteins augment hypoxia-induced angiogenesis by inducing the key angiogenic vascular endothelial growth factor A (VEGFA) and total protein levels of its receptor 2 (VEGFR2). The activation/phosphorylation of VEGFR2 is critical for mediating downstream, angiogenic signaling events. This study aimed to determine whether reconstituted high-density lipoprotein (rHDL) activates VEGFR2 phosphorylation and the downstream signaling events and the importance of VEGFR2 in the proangiogenic effects of rHDL in hypoxia. In vitro, rHDL increased VEGFR2 activation and enhanced phosphorylation of downstream, angiogenic signaling proteins ERK1/2 and p38 MAPK in hypoxia. Incubation with a VEGFR2-neutralizing antibody attenuated rHDL-induced phosphorylation of VEGFR2, ERK1/2, p38 MAPK, and tubule formation. In a murine model of ischemia-driven neovascularization, rHDL infusions enhanced blood perfusion and augmented capillary and arteriolar density. Infusion of a VEGFR2-neutralizing antibody ablated those proangiogenic effects of rHDL. Circulating Sca1+/CXCR4+ angiogenic progenitor cell levels, important for neovascularization in response to ischemia, were higher in rHDL-infused mice 3 d after ischemic induction, but that did not occur in mice that also received the VEGFR2-neutralizing antibody. In summary, VEGFR2 has a key role in the proangiogenic effects of rHDL in hypoxia/ischemia. These findings have therapeutic implications for angiogenic diseases associated with an impaired response to tissue ischemia.-Cannizzo, C. M., Adonopulos, A. A., Solly, E. L., Ridiandries, A., Vanags, L. Z., Mulangala, J., Yuen, S. C. G., Tsatralis, T., Henriquez, R., Robertson, S., Nicholls, S. J., Di Bartolo, B. A., Ng, M. K. C., Lam, Y. T., Bursill, C. A., Tan, J. T. M. VEGFR2 is activated by high-density lipoproteins and plays a key role in the proangiogenic action of HDL in ischemia.


Assuntos
Indutores da Angiogênese/metabolismo , Isquemia/metabolismo , Lipoproteínas HDL/metabolismo , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Isquemia/patologia , Isquemia/fisiopatologia , Lipoproteínas HDL/antagonistas & inibidores , Camundongos , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...