Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 1(2): 251-64, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11702784

RESUMO

Mutations in the zebrafish knypek locus impair gastrulation movements of convergent extension that narrow embryonic body and elongate it from head to tail. We demonstrate that knypek regulates cellular movements but not cell fate specification. Convergent extension movement defects in knypek are associated with abnormal cell polarity, as mutant cells fail to elongate and align medio-laterally. Positional cloning reveals that knypek encodes a member of the glypican family of heparan sulfate proteoglycans. Double mutant and overexpression analyses show that Knypek potentiates Wnt11 signaling, mediating convergent extension. These studies provide experimental and genetic evidence that glypican Knypek acts during vertebrate gastrulation as a positive modulator of noncanonical Wnt signaling to establish polarized cell behaviors underlying convergent extension movements.


Assuntos
Gástrula/fisiologia , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/fisiologia , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Padronização Corporal , Divisão Celular , Clonagem Molecular , Cisteína/química , Relação Dose-Resposta a Droga , Glicoproteínas/metabolismo , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt , Peixe-Zebra
2.
Development ; 128(18): 3571-83, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11566861

RESUMO

The dorsal ectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be specified towards an anterior neural fate by an activation signal, with its subsequent regionalization along the anteroposterior (AP) axis regulated by a graded transforming activity, leading to a properly patterned forebrain, midbrain, hindbrain and spinal cord. The activation phase involves inhibition of BMP signals by dorsal antagonists, but the later caudalization process is much more poorly characterized. Explant and overexpression studies in chick, Xenopus, mouse and zebrafish implicate lateral/paraxial mesoderm in supplying the transforming influence, which is largely speculated to be a Wnt family member. We have analyzed the requirement for the specific ventrolaterally expressed Wnt8 ligand in the posteriorization of neural tissue in zebrafish wild-type and Nodal-deficient embryos (Antivin overexpressing or cyclops;squint double mutants), which show extensive AP brain patterning in the absence of dorsal mesoderm. In different genetic situations that vary the extent of mesodermal precursor formation, the presence of lateral wnt8-expressing cells correlates with the establishment of AP brain pattern. Cell tracing experiments show that the neuroectoderm of Nodal-deficient embryos undergoes a rapid anterior-to-posterior transformation in vivo during a short period at the end of the gastrula stage. Moreover, in both wild-type and Nodal-deficient embryos, inactivation of Wnt8 function by morpholino (MO(wnt8)) translational interference dose-dependently abrogates formation of spinal cord and posterior brain fates, without blocking ventrolateral mesoderm formation. MO(wnt8) also suppresses the forebrain deficiency in bozozok mutants, in which inactivation of a homeobox gene causes ectopic wnt8 expression. In addition, the bozozok forebrain reduction is suppressed in bozozok;squint;cyclops triple mutants, and is associated with reduced wnt8 expression, as seen in cyclops;squint mutants. Hence, whereas boz and Nodal signaling largely cooperate in gastrula organizer formation, they have opposing roles in regulating wnt8 expression and forebrain specification. Our findings provide strong support for a model of neural transformation in which a planar gastrula-stage Wnt8 signal, promoted by Nodal signaling and dorsally limited by Bozozok, acts on anterior neuroectoderm from the lateral mesoderm to produce the AP regional patterning of the CNS.


Assuntos
Sistema Nervoso/embriologia , Proteínas/metabolismo , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Proteínas do Citoesqueleto , Indução Embrionária , Endoderma , Gástrula , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mesoderma , Modelos Biológicos , Proteína Nodal , Ligantes da Sinalização Nodal , Prosencéfalo/embriologia , Proteínas/genética , Transdução de Sinais , Células-Tronco , Fatores de Tempo , Distribuição Tecidual , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt , Proteínas de Xenopus
3.
Genes Dev ; 15(18): 2483-93, 2001 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-11562356

RESUMO

Previous studies identified zebrafish foxc1a and foxc1b as homologs of the mouse forkhead gene, Foxc1. Both genes are transcribed in the unsegmented presomitic mesoderm (PSM), newly formed somites, adaxial cells, and head mesoderm. Here, we show that inhibiting synthesis of Foxc1a (but not Foxc1b) protein with two different morpholino antisense oligonucleotides blocks formation of morphological somites, segment boundaries, and segmented expression of genes normally transcribed in anterior and posterior somites and expression of paraxis implicated in somite epithelialization. Patterning of the anterior PSM is also affected, as judged by the absence of mesp-b, ephrinB2, and ephA4 expression, and the down-regulation of notch5 and notch6. In contrast, the expression of other genes, including mesp-a and papc, in the anterior of somite primordia, and the oscillating expression of deltaC and deltaD in the PSM appear normal. Nevertheless, this expression is apparently insufficient for the maturation of the presumptive somites to proceed to the stage when boundary formation occurs or for the maintenance of anterior/posterior patterning. Mouse embryos that are compound null mutants for Foxc1 and the closely related Foxc2 have no morphological somites and show abnormal expression of Notch signaling pathway genes in the anterior PSM. Therefore, zebrafish foxc1a plays an essential and conserved role in somite formation, regulating both the expression of paraxis and the A/P patterning of somite primordia.


Assuntos
Somitos , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Primers do DNA , Desenvolvimento Embrionário , Fatores de Transcrição Forkhead , Dados de Sequência Molecular , Fenótipo , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Int J Dev Biol ; 45(1): 299-310, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11291860

RESUMO

The zebrafish bozozok (boz) gene encoding a homeodomain protein (also named Dharma/Nieuwkoid) is required during blastula stages for the formation of a complete Spemann-Mangold gastrula organizer and subsequent development of axial mesoderm and anterior neural structures. Expression of bozin the dorsal yolk syncytial layer (YSL) and overlying marginal blastomeres is activated by beta-catenin. Bozozok itself acts as a transcriptional repressor, and promotes organizer formation by directly inhibiting expression of the bmp2b (swirl) gene and by negatively regulating Wnt signaling by an unknown mechanism. boz cooperates with the Nodal-related secreted factors, Cyclops and Squint, in organizer formation. The incomplete organizer in boz mutants is deficient in expression of a number of factors such as Chordin that antagonize Bone morphogenetic proteins (Bmps), and Dickkopf 1, a Wnt antagonist. Conversely, the dorsal blastoderm of boz mutants exhibits ectopic expression of genes normally excluded from the dorsal midline such as wnt8 or tbx6. boz specifies the formation of anterior neuroectoderm by regulating Bmp and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by limiting the anti-neuralizing activity of Bmp morphogens. In addition, by negative regulation of Wnt signaling, boz limits posteriorization of neuroectoderm. bozozok chordino double mutants exhibit a synergistic loss of head and trunk. This synthetic phenotype is due to dramatically increased Bmp signaling and consequent massive accumulation of cells in the tailbud at the expense of dorso-anterior structures. Therefore, boz and din act in overlapping pathways that provide the main mechanism to limit Bmp signaling in the zebrafish gastrula and allow for head and trunk development. Notably, Bozozok appears to function by repressing transcription of target genes such as swr (bmp2b) gene, and as such is the earliest acting repressor that the nascent dorsal axis is using to antagonize ventral influences.


Assuntos
Proteínas de Homeodomínio/fisiologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Gástrula/citologia , Genes Homeobox , Proteínas de Homeodomínio/genética , Mesoderma/citologia , Mutação , Sistema Nervoso/embriologia , Organizadores Embrionários , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais , Proteínas Wnt , Peixe-Zebra/genética
5.
Mech Dev ; 100(2): 343-7, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11165495

RESUMO

Mouse Foxc1 (previously Mf1) is a member of the conserved forkhead/winged helix transcription factor gene family. It is expressed in many mesodermal tissues including paraxial mesoderm of the trunk and head, prechondrogenic mesenchyme, branchial arches and developing kidney. Homozygous mutants die perinatally with hydrocephalus and skeletal, cardiovascular, ocular and genitourinary defects. Here, we report the cloning and expression of two zebrafish foxc1 homologues, foxc1a and foxc1b. During gastrulation and somitogenesis both genes have similar expression patterns in the hypoblast, paraxial and presomitic mesoderm, somites and trunk adaxial cells. Expression in the somites is downregulated as they differentiate, but is maintained in the sclerotome. Later, some differences in expression pattern emerge. For example, only foxc1a transcripts are detected in the pronephros primodia and in the head mesoderm around the eyes, while only foxc1b is expressed in the pharyngeal arches and pectoral fins. Early expression of foxc1a in the paraxial mesoderm is modified in chordino, swirl, somitabun, and spadetail mutants.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra , Sequência de Aminoácidos , Animais , Clonagem Molecular , Regulação para Baixo , Embrião não Mamífero/metabolismo , Fatores de Transcrição Forkhead , Expressão Gênica , Hibridização In Situ , Mesoderma/metabolismo , Dados de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Somitos/metabolismo , Fatores de Tempo , Distribuição Tecidual , Transcrição Gênica , Peixe-Zebra
6.
Genes Dev ; 14(24): 3087-92, 2000 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-11124801

RESUMO

Spatial variations in the levels of bone morphogenetic protein (BMP) signaling are a critical determinant of dorsoanterior-ventroposterior pattern in vertebrate embryos. Whereas BMP overexpression abolishes both head and trunk development, known single and double loss-of-function mutations in BMP inhibitors have less dramatic effects. We report that combining mutations in the zebrafish genes bozozok and chordino causes a synergistic loss of head and trunk, whereas most cells express ventro-posterior markers and develop into a tail. Genetic inactivation of BMP signaling fully suppresses these defects. Thus, a remarkably simple genetic mechanism, involving a coinhibition of BMP function by the partially overlapping bozozok and chordino pathways is used to specify vertebrate head and trunk.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Cabeça/embriologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Embrião não Mamífero , Proteínas do Olho , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/anormalidades , Proteínas de Homeodomínio/genética , Mesoderma/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Cauda/embriologia , Proteína Homeobox SIX3
7.
Genesis ; 28(2): 58-67, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11064422

RESUMO

The gastrula organizer forms in the dorsal region of the zebrafish embryo, where the bozozok/dharma homeobox gene downregulates expression of the vega1 transcriptional repressor. Here, we describe a novel Vega family homeobox gene, vega2. Expression of vega2 is initiated at the ventral blastoderm margin during blastula stages, and by gastrulation becomes complementary to but partially overlapping with the dorsal expression domain of the homeobox gene goosecoid (gsc). This dorsal exclusion of vega2 expression is not observed in bozozok mutants in which organizer formation is impaired. Both vega2 and vega1 can physically interact with Gsc. Zebrafish embryos injected with vega2 mRNA failed to express gsc and developed a headless phenotype. Conversely, a putative dominant negative form of vega2, VP16-vega2, elicited the expansion of gsc expression and a dorsalized phenotype. We suggest that vega2, in cooperation with vega1, functions as a negative regulator of organizer genes including gsc, and participates in the refinement of the gastrula organizer domain.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Organizadores Embrionários/fisiologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Western Blotting , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteína Goosecoid , Proteínas de Homeodomínio/química , Luciferases/metabolismo , Dados de Sequência Molecular , Mutagênese , Organizadores Embrionários/embriologia , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Transfecção , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Proc Natl Acad Sci U S A ; 97(22): 12121-6, 2000 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-11050240

RESUMO

During zebrafish development, zygotic gene expression initiated at the midblastula transition converts maternal information on embryo polarity into a transcriptional read-out. Expression of a homeobox gene, vega1, is activated at midblastula transition in all blastomeres, but is down-regulated dorsally before gastrulation. Ubiquitous expression of vega1 is maintained in bozozok mutants, in which the dorsal-specific homeobox gene bozozok/dharma (boz/dha) is disrupted and organizer formation is impaired. Vega1 inhibits expression of boz/dha and organizer-specific genes, and causes ventralization resulting in a headless phenotype. In contrast, VP16-vega1, a fusion including the Vega1 homeodomain and VP16 activation domain, elicits ectopic expression of organizer genes and suppresses several aspects of the boz mutant phenotype. We propose that boz/dha-dependent down-regulation of vega1 in the dorsal region is an early essential step in organizer formation in zebrafish.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Peixe-Zebra , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Proteínas de Homeodomínio/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
9.
Genesis ; 27(4): 159-73, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10992326

RESUMO

Convergence and extension are gastrulation movements that participate in the establishment of the vertebrate body plan. Using new methods for quantifying convergence and extension movements of cell groups, we demonstrate that in wild-type embryos, dorsal convergence of lateral cells is initially slow, but speeds up between the end of the gastrula period and early segmentation. Convergence and extension movements of lateral cells in trilobite mutants are normal during the gastrula period but reduced by early segmentation. Morphometric studies revealed that during epiboly wild-type gastrulae become ovoid, whereas trilobite embryos remain rounder. By segmentation, trilobite embryos exhibit shorter, broader embryonic axes. The timing of these morphological defects correlates well with impaired cell movements, suggesting reduced convergence and extension are the main defects underlying the trilobite phenotype. Our gene expression, genetic, and fate mapping analyses show the trilobite mutation affects movements without altering dorsoventral patterning or cell fates. We propose that trilobite function is required for cell properties that promote increased speed of converging cells and extension movements in the dorsal regions of the zebrafish gastrula.


Assuntos
Artrópodes/embriologia , Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Gástrula/fisiologia , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Artrópodes/anatomia & histologia , Artrópodes/genética , Padronização Corporal/genética , Caderinas/biossíntese , Caderinas/genética , Movimento Celular/genética , Fósseis , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mutação/genética , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Proteínas Wnt , Peixe-Zebra/anatomia & histologia
10.
Curr Biol ; 10(17): 1041-9, 2000 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-10996071

RESUMO

BACKGROUND: Signaling molecules related to the Nodal protein play essential roles in the formation and patterning of the gastrula organizer and the germ layers during vertebrate development. The forkhead transcription factor FoxH1 (also known as Fast1) is a component of the Nodal signaling pathway. Although different roles have been suggested for FoxH1, its specific function during development is still unclear. RESULTS: We report that the zebrafish locus schmalspur (sur) encodes a member of the FoxH1 family. Maternal sur transcripts were localized to the animal pole during oogenesis. Further expression was detected in a dorsoventral gradient at the onset of gastrulation and in specific domains in the organizer, notochord and lateral plate mesoderm. Embryos lacking zygotic sur function had variable deficiencies of prechordal plate and ventral neuroectoderm. In the absence of both maternal and zygotic sur function, embryos failed to form a morphologically distinct gastrula organizer and, later, developed severe defects in all axial structures. In these embryos, expression of nodal genes was initiated but not maintained. Unlike embryos lacking Nodal signaling, sur mutants formed endoderm and paraxial mesoderm. CONCLUSIONS: FoxH1 is involved in regulatory feedback loops that control the duration and intensity of Nodal signals in early patterning. In zebrafish, FoxH1 is not essential to induce Nodal-dependent cell fates, but its function is central in modulating and enhancing morphogenetic Nodal signals.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal , Primers do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead , Dados de Sequência Molecular , Mutação , Proteína Nodal , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
Curr Biol ; 10(17): 1063-6, 2000 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-10996075

RESUMO

In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm.


Assuntos
Mutação , Peixe-Zebra/genética , Animais
12.
Development ; 127(11): 2333-45, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10804176

RESUMO

The neuroectoderm of the vertebrate gastrula was proposed by Nieuwkoop to be regionalized into forebrain, midbrain, hindbrain and spinal cord by a two-step process. In the activation step, the Spemann gastrula organizer induces neuroectoderm with anterior character, followed by posteriorization by a transforming signal. Recently, simultaneous inhibition of BMP and Wnt signaling was shown to induce head formation in frog embryos. However, how the inhibition of BMP and Wnt signaling pathways specify a properly patterned head, and how they are regulated in vivo, is not understood. Here we demonstrate that the loss of anterior neural fates observed in zebrafish bozozok (boz) mutants occurs during gastrulation due to a reduction and subsequent posteriorization of neuroectoderm. The neural induction defect was correlated with decreased chordino expression and consequent increases in bmp2b/4 expression, and was suppressed by overexpression of BMP antagonists. Whereas expression of anterior neural markers was restored by ectopic BMP inhibition in early boz gastrulae, it was not maintained during later gastrulation. The posteriorization of neuroectoderm in boz was correlated with ectopic dorsal wnt8 expression. Overexpression of a Wnt antagonist rescued formation of the organizer and anterior neural fates in boz mutants. We propose that boz specifies formation of anterior neuroectoderm by regulating BMP and Wnt pathways in a fashion consistent with Nieuwkoop's two-step neural patterning model. boz promotes neural induction by positively regulating organizer-derived chordino and limiting the antineuralizing activity of BMP2b/4 morphogens. In addition, by negative regulation of Wnt signaling, boz promotes organizer formation and limits posteriorization of neuroectoderm in the late gastrula.


Assuntos
Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/embriologia , Ectoderma/fisiologia , Gástrula/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta , Proteínas de Peixe-Zebra , Animais , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mutagênese , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
13.
Dev Biol ; 217(1): 138-52, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10625541

RESUMO

We identified a zebrafish homologue of Dickkopf-1 (Dkk1), which was previously identified in Xenopus as a Wnt inhibitor with potent head-inducing activity. Zebrafish dkk1 is expressed in the dorsal marginal blastoderm and also in the dorsal yolk syncytial layer after mid-blastula transition. At later blastula stages, the expression expands to the entire blastoderm margin. During gastrulation, dkk1-expressing cells are confined to the embryonic shield and later to the anterior axial mesendoderm, prospective prechordal plate. Embryos, in which dkk1 was ectopically expressed, exhibited enlarged forebrain, eyes, and axial mesendoderm such as prechordal plate and notochord. dkk1 expression in the dorso-anterior mesendoderm during gastrulation was prominently reduced in zebrafish mutants bozozok (boz), squint (sqt), and one-eyed pinhead (oep), which all display abnormalities in the formation and function of the Spemann organizer and axial mesendoderm. dkk1 expression was normal in these embryos during the blastula period, indicating that zygotic functions of these genes are required for maintenance but not establishment of dkk1 expression. Overexpression of dkk1 suppressed defects in the development of forebrain, eyes, and notochord in boz mutants. Overexpression of dkk1 promoted anterior neuroectoderm development in the embryos injected with antivin RNA, which lack most of the mesoderm and endoderm, suggesting that Dkk1 can affect regionalization of neuroectoderm independently of dorso-anterior mesendoderm. These data indicate that Dkk1, expressed in dorsal mesendoderm, functions in the formation of both the anterior nervous system and the axial mesendoderm in zebrafish.


Assuntos
Prosencéfalo/embriologia , Proteínas/fisiologia , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Desenvolvimento Embrionário , Endoderma , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular , Mesoderma , Dados de Sequência Molecular , Mutação , Proteína Nodal , Fenótipo , Proteínas/química , Proteínas/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra
14.
Arch Microbiol ; 172(6): 364-76, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10591846

RESUMO

During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation.


Assuntos
Genes de Protozoários , Physarum polycephalum/crescimento & desenvolvimento , Physarum polycephalum/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , DNA de Protozoário/genética , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Dev Biol ; 214(1): 72-86, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10491258

RESUMO

The dorsal-ventral axis of vertebrate embryos is thought to be specified by a gradient of bone morphogenetic protein (BMP) activity, which, in part, arises through the interaction of dorsally expressed antagonists Chordin and Noggin with the ventralizing BMPs. The zebrafish mercedes(tm305), ogon(m60), and short tail(b180) mutations produce ventralized phenotypes, including expanded bmp2b/4 expression domains. We find that the three mutations are allelic and that the locus they define, renamed ogon (ogo), maps to linkage group 25. The ogo(m60) and ogo(b180) mutations are deficiencies and thus represent null alleles, whereas the ENU-induced allele ogo(tm305) retains partial function. Aspects of the ogo(m60) and ogo(tm305) mutant phenotypes are fully suppressed by overexpression of BMP antagonists. Moreover, swirl(tc300), a null mutation in bmp2b, is epistatic to ogo(m60) mutation, providing further evidence that ogo normally functions in a BMP-dependent manner. Embryonic patterning is highly sensitive to maternal and zygotic ogo gene dosage, especially when the level of zygotic chordin activity is also reduced. However, elimination of the zygotic activity of both genes does not result in a completely ventralized embryo. Thus, while ogo and chordin are required to limit activity of BMPs, additional mechanisms must exist to block these ventralizing signals. We have ruled out zebrafish noggin homologues as candidates for the ogo gene, including a newly identified gene, nog1, which is specifically expressed in the gastrula organizer. The results suggest that ogo encodes an as yet unidentified dorsalizing factor that mediates dorsoventral patterning by directly or indirectly antagonizing BMP activity.


Assuntos
Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/genética , Peixe-Zebra/embriologia , Zigoto/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Etilnitrosoureia , Feminino , Dados de Sequência Molecular , Mutagênese , Fenótipo , Biossíntese de Proteínas , Proteínas/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Peixe-Zebra/genética
16.
Development ; 126(7): 1427-38, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10068636

RESUMO

The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.


Assuntos
Proteínas de Homeodomínio/genética , Transativadores , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Encéfalo/embriologia , Proteínas do Citoesqueleto/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Mutação , Notocorda/embriologia , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , beta Catenina
18.
Curr Top Dev Biol ; 41: 1-35, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-9784971

RESUMO

Vertebrate embryos, despite quite diverse early morphologies, appear to employ similar cellular strategies and conserved biochemical pathways in their development (Eyal-Giladi, 1997). In the past decade, a small tropical teleost, zebrafish (Danio rerio), became an important model system in which to study development (Streisinger et al., 1981). By combining embryology with molecular and classical genetic methods, our understanding of early inductive and morphogenetic events during vertebrate embryogenesis significantly advanced. In zebrafish, dorsal-ventral polarity is established during early cleavage and is dependent on microtubular transport of determinants from the vegetal pole to the blastomeres positioned on top of the yolk cell. The syncytium forming from these marginal blastomeres in the early blastula exhibits dorsal-ventral asymmetry with beta-catenin localized to the nuclei on the presumptive dorsal side of the syncytium. The yolk cell is a source of signals that induce and pattern overlying blastoderm. Therefore, the dorsal yolk syncytial layer is equivalent to the Nieuwkoop center of the amphibian embryo. The embryonic shield, a thickening of the dorsal blastoderm margin, exhibits properties similar to the amphibian Spemann organizer. However, certain inductive and patterning signals from the organizer might be produced before the shield forms or might originate outside of the shield. Similar to the amphibian embryo, the key patterning functions of the fish dorsal organizer (i.e., dorsalization of mesoderm, ectoderm, and coordination of gastrulation movements) are performed by secreted molecules that antagonize the ventralizing activity of the swil (zbmp-2) and zbmp-4 gene products expressed on the ventral side of the embryo. These functions of the dorsal organizer require the activity of the chordino gene (a zebrafish homologue of chordin), bozozok, mercedes and ogon loci.


Assuntos
Padronização Corporal/genética , Fator de Crescimento Transformador beta , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Blastocisto/citologia , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Fase de Clivagem do Zigoto/citologia , Indução Embrionária/genética , Feminino , Gástrula/citologia , Masculino , Biologia Molecular , Mutação , Proteínas de Peixe-Zebra
19.
Dev Biol ; 203(2): 382-99, 1998 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-9808788

RESUMO

Vertebrate eye development in the anterior region of the neural plate involves a series of inductive interactions dependent on the underlying prechordal plate and signals from the midline of the neural plate, including Hedgehog. The mechanisms controlling the spatiotemporal expression pattern of hedgehog genes are currently not understood. Cyclopia is observed in trilobite (tri) and knypek (kny) mutants with affected convergent extension of the embryonic axis during gastrulation. Here, we demonstrate that tri mutants show a high frequency of partial or complete cyclopia, kny mutants exhibit cyclopia infrequently, while knym119 trim209 double-mutant embryos have dramatically reduced convergent extension and are completely cyclopic. We analyzed the relationships between the convergent extension defect, the expression of hedgehog and prechordal plate genes, and the formation of cyclopia in knym119 and trim209 mutants. Our results correlate the cyclopia phenotype with the abnormal location of hh-expressing cells with respect to the optic primordium. We show that cyclopia in these mutants is not due to an incompetence of tri and kny cells to respond to Hedgehog signaling. Rather, it is a consequence of exceeding a critical distance (>40-50 micrometer) between hedgehog-expressing cells and the prospective eye field. We hypothesize that at this distance, midline cells are not in an appropriate position to physically separate the eye field and that HH and other signals do not reach the appropriate target cells. Furthermore, tri and kny have overlapping functions in establishing proper alignment of the anterior neural plate and midline cells expressing shh and twhh genes when the partitioning of the eye primordium takes place.


Assuntos
Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Transativadores , Peixe-Zebra/embriologia , Animais , Anormalidades do Olho/genética , Proteínas Hedgehog , Hibridização In Situ , Microinjeções , Mutação/genética , Fenótipo , Proteínas/genética , RNA Mensageiro/genética , Temperatura , Transcrição Gênica/genética , Proteínas de Peixe-Zebra
20.
Development ; 125(23): 4655-67, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9806915

RESUMO

The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.


Assuntos
Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Cruzamentos Genéticos , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/citologia , Indução Embrionária , Feminino , Rim/citologia , Glomérulos Renais/citologia , Glomérulos Renais/embriologia , Túbulos Renais/citologia , Túbulos Renais/embriologia , Masculino , Mutagênese , Néfrons/citologia , Néfrons/embriologia , Fator de Transcrição PAX2 , Fenótipo , Fatores de Transcrição/genética , Proteínas WT1 , Proteínas de Peixe-Zebra , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...