Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Sci Rep ; 14(1): 9998, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693196

RESUMO

It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. From a cohort of 4-7 month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In order of relative abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. In comparison to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Pulmão , Macaca mulatta , Microbiota , Boca , RNA Ribossômico 16S , Animais , Macaca mulatta/microbiologia , Pulmão/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Boca/microbiologia , RNA Ribossômico 16S/genética , Masculino , Modelos Animais de Doenças
2.
Res Sq ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609264

RESUMO

Background: It is estimated that more than half of the world population has been infected with Helicobacter pylori. Most newly acquired H. pylori infections occur in children before 10 years of age. We hypothesized that early life H. pylori infection could influence the composition of the microbiome at mucosal sites distant to the stomach. To test this hypothesis, we utilized the infant rhesus macaque monkey as an animal model of natural H. pylori colonization to determine the impact of infection on the lung and oral microbiome during a window of postnatal development. Results: From a cohort of 4-7-month-old monkeys, gastric biopsy cultures identified 44% of animals infected by H. pylori. 16S ribosomal RNA gene sequencing of lung washes and buccal swabs from animals showed distinct profiles for the lung and oral microbiome, independent of H. pylori infection. In relative order of abundance, the lung microbiome was dominated by the phyla Proteobacteria, Firmicutes, Bacteroidota, Fusobacteriota, Campilobacterota and Actinobacteriota while the oral microbiome was dominated by Proteobacteria, Firmicutes, Bacteroidota, and Fusobacteriota. Relative to the oral cavity, the lung was composed of more genera and species that significantly differed by H. pylori status, with a total of 6 genera and species that were increased in H. pylori negative infant monkey lungs. Lung, but not plasma IL-8 concentration was also associated with gastric H. pylori load and lung microbial composition. Conclusions: We found the infant rhesus macaque monkey lung harbors a microbiome signature that is distinct from that of the oral cavity during postnatal development. Gastric H. pylori colonization and IL-8 protein were linked to the composition of microbial communities in the lung and oral cavity. Collectively, these findings provide insight into how H. pylori infection might contribute to the gut-lung axis during early childhood and modulate future respiratory health.

3.
bioRxiv ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37461695

RESUMO

Most cases of gastric cancer are caused by chronic Helicobacter pylori infection, but the lack of early onco-diagnostics and a high risk for antibiotic resistance hampers early intervention through eradication of H. pylori infection by antibiotics. We reported on a protective mechanism where H. pylori gastric mucosal attachment can be reduced by natural antibodies that block the binding of its attachment protein BabA. Here we show that challenge infection with H. pylori induced response of such blocking antibodies in both human volunteers and in rhesus macaques, that mucosal vaccination with BabA protein antigen induced blocking antibodies in rhesus macaques, and that vaccination in a mouse model induced blocking antibodies that reduced gastric mucosal inflammation, preserved the gastric juice acidity, and fully protected the mice from gastric cancer caused by H. pylori.

4.
Gut Microbes ; 14(1): 2044721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289715

RESUMO

Helicobacter pylori is the major risk factor for gastric cancer. H. pylori harboring the type IV secretion system (T4SS) and its effector CagA encoded on the cag pathogenicity Island (cagPAI) increases the risk. H. pylori PMSS1 has a multi-cagA genotype, modulating cagA copy number dynamically from zero to four copies. To examine the effect of the immune response on cagA copy number change, we utilized a mouse model with different immune status. PMSS1 recovered from Rag1-/- mice, lacking functional T or B cells, retained more cagA copies. PMSS1 recovered from Il10-/- mice, showing intense inflammation, had fewer cagA copies compared to those recovered from wild-type mice. Moreover, cagA copy number of PMSS1 recovered from wild-type and Il10-/- mice was positively correlated with the capacity to induce IL-8 secretion at four weeks of infection. Since recombination in cagY influences T4SS function, including CagA translocation and IL-8 induction, we constructed a multiple linear regression model to predict H. pylori-induced IL-8 expression based on cagA copy number and cagY recombination status; H. pylori induces more IL-8 secretion when the strain has more cagA copies and intact cagY. This study shows that H. pylori PMSS1 in mice with less intense immune response possess higher cagA copy number than those infected in mice with more intense immune response and thus the multi-cagA genotype, along with cagY recombination, functions as an immune-sensitive regulator of H. pylori virulence.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Animais , Proteínas de Bactérias/metabolismo , Variações do Número de Cópias de DNA , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Imunidade , Interleucina-10/genética , Interleucina-8/metabolismo , Camundongos , Virulência
5.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32205402

RESUMO

Chronic Helicobacter pylori colonization in animal models often leads to downregulation of the type IV secretion system (T4SS), typically by recombination in cagY, which is an essential T4SS gene. However, 17 other cag pathogenicity island (cagPAI) genes, as well as some non-cagPAI genes, are also essential for T4SS function. To get a more complete picture of how H. pylori regulates the T4SS during animal colonization, we examined cagY in 534 mouse-passaged isolates that lost T4SS function, defined as a normalized interleukin-8 (IL-8) value of <0.3 relative to the input H. pylori strain PMSS1. In order to analyze the genetic changes in the strains with unchanged cagY, we sequenced the entire pathogenicity island of 60 such isolates using single-molecule, real-time (SMRT) sequencing technology (PacBio, Menlo Park, CA), and we compared the results to the PMSS1 wild type (WT). Of the 534 strains, 271 (51%) showed evidence of recombination in cagY, but we also found indels or nonsynonymous changes in 13 other essential cagPAI genes implicated in H. pylori T4SS function, most commonly cag5, cag10, and cagA While cagY recombination is the most common mechanism by which H. pylori downregulates T4SS function during murine infection, loss of function is also associated with changes in other essential cagPAI genes.


Assuntos
Genes Bacterianos , Ilhas Genômicas , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Sistemas de Secreção Tipo IV/genética , Animais , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Camundongos , Recombinação Genética
6.
mBio ; 11(6)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33443133

RESUMO

The Helicobacter pylori type IV secretion system (T4SS) encoded on the cag pathogenicity island (cagPAI) secretes the CagA oncoprotein and other effectors into the gastric epithelium. During murine infection, T4SS function is lost in an immune-dependent manner, typically as a result of in-frame recombination in the middle repeat region of cagY, though single nucleotide polymorphisms (SNPs) in cagY or in other essential genes may also occur. Loss of T4SS function also occurs in gerbils, nonhuman primates, and humans, suggesting that it is biologically relevant and not simply an artifact of the murine model. Here, we sought to identify physiologically relevant conditions under which T4SS function is maintained in the murine model. We found that loss of H. pylori T4SS function in mice was blunted by systemic Salmonella coinfection and completely eliminated by dietary iron restriction. Both have epidemiologic parallels in humans, since H. pylori strains from individuals in developing countries, where iron deficiency and systemic infections are common, are also more often cagPAI+ than strains from developed countries. These results have implications for our fundamental understanding of the cagPAI and also provide experimental tools that permit the study of T4SS function in the murine model.IMPORTANCE The type IV secretion system (T4SS) is the major Helicobacter pylori virulence factor, though its function is lost during murine infection. Loss of function also occurs in gerbils and in humans, suggesting that it is biologically relevant, but the conditions under which T4SS regulation occurs are unknown. Here, we found that systemic coinfection with Salmonella and iron deprivation each promote retention of T4SS function. These results improve our understanding of the cag pathogenicity island (cagPAI) and provide experimental tools that permit the study of T4SS function in the murine model.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Ilhas Genômicas , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Sistemas de Secreção Tipo IV/genética , Animais , Coinfecção/microbiologia , Feminino , Mucosa Gástrica , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Salmonelose Animal/sangue , Salmonelose Animal/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Fatores de Virulência
7.
Curr Top Microbiol Immunol ; 421: 21-52, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123884

RESUMO

Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.


Assuntos
Infecções por Helicobacter/imunologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Estômago/microbiologia , Estômago/patologia , Fatores de Virulência , Proteínas de Bactérias , Infecções por Helicobacter/microbiologia , Humanos , Úlcera Péptica/microbiologia , Úlcera Péptica/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
8.
PLoS Biol ; 17(5): e3000231, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31048876

RESUMO

Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.


Assuntos
Mucosa Gástrica/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Microscopia Confocal/métodos , Animais , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Contagem de Colônia Microbiana , Feminino , Mucosa Gástrica/efeitos dos fármacos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Especificidade da Espécie , Linfócitos T/efeitos dos fármacos
9.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764950

RESUMO

Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5ß1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5ß1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to α5ß1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5ß1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to α5ß1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to α5ß1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5ß1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5ß1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Integrina alfa5/metabolismo , Integrina beta1/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ilhas Genômicas , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Interações Hospedeiro-Patógeno , Humanos , Integrina alfa5/genética , Integrina beta1/genética , Ligação Proteica , Sistemas de Secreção Tipo IV/genética
10.
ISME J ; 12(1): 77-86, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28885626

RESUMO

Helicobacter suis is the second most prevalent Helicobacter species in the stomach of humans suffering from gastric disease. This bacterium mainly inhabits the stomach of domesticated pigs, in which it causes gastric disease, but it appears to be absent in wild boars. Interestingly, it also colonizes the stomach of asymptomatic rhesus and cynomolgus monkeys. The origin of modern human-, pig- or non-human primate-associated H. suis strains in these respective host populations was hitherto unknown. Here we show that H. suis in pigs possibly originates from non-human primates. Our data suggest that a host jump from macaques to pigs happened between 100 000 and 15 000 years ago and that pig domestication has had a significant impact on the spread of H. suis in the pig population, from where this pathogen occasionally infects humans. Thus, in contrast to our expectations, H. suis appears to have evolved in its main host in a completely different way than its close relative Helicobacter pylori in humans.


Assuntos
Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Helicobacter heilmannii/isolamento & purificação , Macaca fascicularis/microbiologia , Macaca mulatta/microbiologia , Doenças dos Suínos/microbiologia , Animais , Animais Domésticos/microbiologia , Helicobacter heilmannii/classificação , Helicobacter heilmannii/genética , Helicobacter heilmannii/crescimento & desenvolvimento , Humanos , Filogenia , Estômago/microbiologia , Suínos
11.
PLoS One ; 12(8): e0183324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813514

RESUMO

Epidemiologic studies have reported an inverse relationship between childhood Helicobacter pylori infection and development of allergic asthma. Because lung epithelium plays an important role in allergic asthma pathogenesis, we hypothesized that H. pylori may directly influence airway epithelial cell innate immune function, particularly in early childhood. To test our hypothesis, we established an in vitro H. pylori infection model using primary tracheobronchial epithelial cell cultures derived from infant, juvenile and adult rhesus monkeys. Airway epithelial cell cultures were infected with wild-type or cag pathogenicity island mutant H. pylori strains, followed by evaluation of IL-8 and IL-6 protein synthesis. We found that H. pylori primarily increased IL-8 synthesis in a MOI and age-dependent fashion, with a greater than 4-fold induction in infant versus adult cultures. H. pylori-induced IL-8 synthesis in infant and juvenile cultures was significantly reduced by cag pathogenicity island mutants, indicating a requirement for the type IV secretion system. Although peptidoglycan recognition of nucleotide binding oligomerization domain-containing protein 1 (NOD1) and NF-kappaB have been implicated as key cytokine signaling molecules for H. pylori infection in gastric epithelium, NOD1 (ML130) or NF-kappaB (JSH-23) inhibitors minimally affected IL-8 synthesis in airway epithelial cell cultures following H. pylori infection. In contrast, inhibition of the p38 MAP kinase pathway (SB203580) resulted in almost complete suppression of H. pylori-induced IL-8 synthesis. Collectively, these results indicate that H. pylori can preferentially elicit IL-8 synthesis in a model of pediatric airway epithelium using the type IV secretion system via p38 MAP kinase.


Assuntos
Helicobacter pylori/fisiologia , Interleucina-8/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Primatas , Mucosa Respiratória/enzimologia , Transdução de Sinais/fisiologia
12.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396320

RESUMO

Most Helicobacter pylori strains express the BabA adhesin, which binds to ABO/Leb blood group antigens on gastric mucin and epithelial cells and is found more commonly in strains that cause peptic ulcers or gastric cancer, rather than asymptomatic infection. We and others have previously reported that in mice, gerbils, and rhesus macaques, expression of babA is lost, either by phase variation or by gene conversion, in which the babB paralog recombines into the babA locus. The functional significance of loss of babA expression is unknown. Here we report that in rhesus monkeys, there is independent selective pressure for loss of babA and for overexpression of BabB, which confers a fitness advantage. Surprisingly, loss of babA by phase variation or gene conversion is not dependent on the capacity of BabA protein to bind Leb, which suggests that it may have other, unrecognized functions. These findings have implications for the role of outer membrane protein diversity in persistent H. pylori infection.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Feminino , Aptidão Genética , Genótipo , Helicobacter pylori/metabolismo , Macaca mulatta , Masculino , Mutação , Análise de Sequência de DNA , Estômago/microbiologia , Estômago/patologia
13.
Sci Rep ; 7: 46499, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418004

RESUMO

Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. Here we used mouse models to examine host determinants that affect H. pylori BabA expression. BabA expression was lost by phase variation as frequently in WT mice as in RAG2-/- mice that do not have functional B or T cells, and in MyD88-/-, TLR2-/- and TLR4-/- mice that are defective in toll like receptor signaling. The presence of other bacteria had no effect on BabA expression as shown by infection of germ free mice. Moreover, loss of BabA expression was not dependent on Leb expression or the capacity of BabA to bind Leb. Surprisingly, gender was the host determinant most associated with loss of BabA expression, which was maintained to a greater extent in male mice and was associated with greater bacterial load. These results suggest the possibility that loss of BabA expression is not driven by adaptive immunity or toll-like receptor signaling, and that BabA may have other, unrecognized functions in addition to serving as an adhesin that binds Leb.


Assuntos
Adesinas Bacterianas/biossíntese , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/metabolismo , Helicobacter pylori/fisiologia , Interações Hospedeiro-Patógeno , Adesinas Bacterianas/genética , Animais , Modelos Animais de Doenças , Feminino , Infecções por Helicobacter/microbiologia , Humanos , Masculino , Camundongos , Camundongos Knockout
14.
mBio ; 8(1)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223462

RESUMO

Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish "the genome" of a bacterial strain. Variability is usually reduced ("only sequence from a single colony"), ignored ("just publish the consensus"), or placed in the "too-hard" basket ("analysis of raw read data is more robust"). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as "the genome" of a bacterial strain may be misleading.


Assuntos
Variação Genética , Genoma Bacteriano , Helicobacter pylori/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Mutação
15.
FEMS Microbiol Lett ; 363(24)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27940463

RESUMO

Helicobacter pylori commonly infects the epithelial layer of the human stomach and in some individuals causes peptic ulcers, gastric adenocarcinoma or gastric lymphoma. Helicobacter pylori is a genetically diverse species, and the most important bacterial virulence factor that increases the risk of developing disease, versus asymptomatic colonization, is the cytotoxin associated gene pathogenicity island (cagPAI). Socially housed rhesus macaques are often naturally infected with H. pylori similar to that which colonizes humans, but little is known about the cagPAI. Here we show that H. pylori strains isolated from naturally infected rhesus macaques have a cagPAI very similar to that found in human clinical isolates, and like human isolates, it encodes a functional type IV secretion system. These results provide further support for the relevance of rhesus macaques as a valid experimental model for H. pylori infection in humans.


Assuntos
Ilhas Genômicas , Infecções por Helicobacter/veterinária , Helicobacter pylori/genética , Macaca mulatta , Doenças dos Primatas/microbiologia , Animais , Genes Bacterianos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Homologia de Sequência , Sistemas de Secreção Tipo IV/genética
16.
Gastroenterology ; 151(6): 1164-1175.e3, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27569724

RESUMO

BACKGROUND & AIMS: Peptic ulcer disease and gastric cancer are caused most often by Helicobacter pylori strains that harbor the cag pathogenicity island, which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host cells. cagY is an essential gene in the T4SS and has an unusual DNA repeat structure that predicts in-frame insertions and deletions. These cagY recombination events typically lead to a reduction in T4SS function in mouse and primate models. We examined the role of the immune response in cagY-dependent modulation of T4SS function. METHODS: H pylori T4SS function was assessed by measuring CagA translocation and the capacity to induce interleukin (IL)8 in gastric epithelial cells. cagY recombination was determined by changes in polymerase chain reaction restriction fragment-length polymorphisms. T4SS function and cagY in H pylori from C57BL/6 mice were compared with strains recovered from Rag1-/- mice, T- and B-cell-deficient mice, mice with deletion of the interferon gamma receptor (IFNGR) or IL10, and Rag1-/- mice that received adoptive transfer of control or Ifng-/- CD4+ T cells. To assess relevance to human beings, T4SS function and cagY recombination were assessed in strains obtained sequentially from a patient after 7.4 years of infection. RESULTS: H pylori infection of T-cell-deficient and Ifngr1-/- mice, and transfer of CD4+ T cells to Rag1-/- mice, showed that cagY-mediated loss of T4SS function requires a T-helper 1-mediated immune response. Loss of T4SS function and cagY recombination were more pronounced in Il10-/- mice, and in control mice infected with H pylori that expressed a more inflammatory form of cagY. Complementation analysis of H pylori strains isolated from a patient over time showed changes in T4SS function that were dependent on recombination in cagY. CONCLUSIONS: Analysis of H pylori strains from mice and from a chronically infected patient showed that CagY functions as an immune-sensitive regulator of T4SS function. We propose that this is a bacterial adaptation to maximize persistent infection and transmission to a new host under conditions of a robust inflammatory response.


Assuntos
Proteínas de Bactérias/genética , Células Epiteliais/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Sistemas de Secreção Tipo IV/genética , Animais , Antígenos de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Doença Crônica , Feminino , Mucosa Gástrica/citologia , Gastrite/imunologia , Gastrite/microbiologia , Infecções por Helicobacter/sangue , Proteínas de Homeodomínio/genética , Humanos , Interferon gama/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Recombinação Genética , Transdução de Sinais , Linfócitos T Auxiliares-Indutores , Fatores de Tempo , Translocação Genética , Receptor de Interferon gama
18.
Cell Host Microbe ; 19(1): 55-66, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764597

RESUMO

The Helicobacter pylori adhesin BabA binds mucosal ABO/Le(b) blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Polissacarídeos/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Adesinas Bacterianas/genética , Animais , Sítios de Ligação , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica
19.
JAMA Intern Med ; 175(11): 1792-801, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26348734

RESUMO

IMPORTANCE: Clostridium difficile is a major cause of health care-associated infection, but disagreement between diagnostic tests is an ongoing barrier to clinical decision making and public health reporting. Molecular tests are increasingly used to diagnose C difficile infection (CDI), but many molecular test-positive patients lack toxins that historically defined disease, making it unclear if they need treatment. OBJECTIVE: To determine the natural history and need for treatment of patients who are toxin immunoassay negative and polymerase chain reaction (PCR) positive (Tox-/PCR+) for CDI. DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study at a single academic medical center among 1416 hospitalized adults tested for C difficile toxins 72 hours or longer after admission between December 1, 2010, and October 20, 2012. The analysis was conducted in stages with revisions from April 27, 2013, to January 13, 2015. MAIN OUTCOMES AND MEASURES: Patients undergoing C difficile testing were grouped by US Food and Drug Administration-approved toxin and PCR tests as Tox+/PCR+, Tox-/PCR+, or Tox-/PCR-. Toxin results were reported clinically. Polymerase chain reaction results were not reported. The main study outcomes were duration of diarrhea during up to 14 days of treatment, rate of CDI-related complications (ie, colectomy, megacolon, or intensive care unit care) and CDI-related death within 30 days. RESULTS: Twenty-one percent (293 of 1416) of hospitalized adults tested for C difficile were positive by PCR, but 44.7% (131 of 293) had toxins detected by the clinical toxin test. At baseline, Tox-/PCR+ patients had lower C difficile bacterial load and less antibiotic exposure, fecal inflammation, and diarrhea than Tox+/PCR+ patients (P < .001 for all). The median duration of diarrhea was shorter in Tox-/PCR+ patients (2 days; interquartile range, 1-4 days) than in Tox+/PCR+ patients (3 days; interquartile range, 1-6 days) (P = .003) and was similar to that in Tox-/PCR- patients (2 days; interquartile range, 1-3 days), despite minimal empirical treatment of Tox-/PCR+ patients. No CDI-related complications occurred in Tox-/PCR+ patients vs 10 complications in Tox+/PCR+ patients (0% vs 7.6%, P < .001). One Tox-/PCR+ patient had recurrent CDI as a contributing factor to death within 30 days vs 11 CDI-related deaths in Tox+/PCR+ patients (0.6% vs 8.4%, P = .001). CONCLUSIONS AND RELEVANCE: Among hospitalized adults with suspected CDI, virtually all CDI-related complications and deaths occurred in patients with positive toxin immunoassay test results. Patients with a positive molecular test result and a negative toxin immunoassay test result had outcomes that were comparable to patients without C difficile by either method. Exclusive reliance on molecular tests for CDI diagnosis without tests for toxins or host response is likely to result in overdiagnosis, overtreatment, and increased health care costs.


Assuntos
Toxinas Bacterianas/análise , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium , Infecção Hospitalar , Uso Excessivo dos Serviços de Saúde , Reação em Cadeia da Polimerase/estatística & dados numéricos , Idoso , Antibacterianos/uso terapêutico , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Estudos de Coortes , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Uso Excessivo dos Serviços de Saúde/prevenção & controle , Uso Excessivo dos Serviços de Saúde/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...