Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Circulation ; 146(12): 917-929, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735005

RESUMO

BACKGROUND: Genome-wide association studies have identified many genetic loci that are robustly associated with coronary artery disease (CAD). However, the underlying biological mechanisms are still unknown for most of these loci, hindering the progress to medical translation. Evidence suggests that the genetic influence on CAD susceptibility may act partly through vascular smooth muscle cells (VSMCs). METHODS: We undertook genotyping, RNA sequencing, and cell behavior assays on a large bank of VSMCs (n>1499). Expression quantitative trait locus and splicing quantitative trait locus analyses were performed to identify genes with an expression that was influenced by CAD-associated variants. To identify candidate causal genes for CAD, we ascertained colocalizations of VSMC expression quantitative trait locus signals with CAD association signals by performing causal variants identification in associated regions analysis and the summary data-based mendelian randomization test. Druggability analysis was then performed on the candidate causal genes. CAD risk variants were tested for associations with VSMC proliferation, migration, and apoptosis. Collective effects of multiple CAD-associated variants on VSMC behavior were estimated by polygenic scores. RESULTS: Approximately 60% of the known CAD-associated variants showed statistically significant expression quantitative trait locus or splicing quantitative trait locus effects in VSMCs. Colocalization analyses identified 84 genes with expression quantitative trait locus signals that significantly colocalized with CAD association signals, identifying them as candidate causal genes. Druggability analysis indicated that 38 of the candidate causal genes were druggable, and 13 had evidence of drug-gene interactions. Of the CAD-associated variants tested, 139 showed suggestive associations with VSMC proliferation, migration, or apoptosis. A polygenic score model explained up to 5.94% of variation in several VSMC behavior parameters, consistent with polygenic influences on VSMC behavior. CONCLUSIONS: This comprehensive analysis shows that a large percentage of CAD loci can modulate gene expression in VSMCs and influence VSMC behavior. Several candidate causal genes identified are likely to be druggable and thus represent potential therapeutic targets.


Assuntos
Doença da Artéria Coronariana , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
3.
J Cereal Sci ; 93: 102965, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32508376

RESUMO

Mutations at the LYS3 locus in barley have multiple effects on grain development, including an increase in embryo size and a decrease in endosperm starch content. The gene underlying LYS3 was identified by genetic mapping and mutations in this gene were identified in all four barley lys3 alleles. LYS3 encodes a transcription factor called Prolamin Binding Factor (PBF). Its role in controlling embryo size was confirmed using wheat TILLING mutants. To understand how PBF controls embryo development, we studied its spatial and temporal patterns of expression in developing grains. The PBF gene is expressed in both the endosperm and the embryos, but the timing of expression in these organs differs. PBF expression in wild-type embryos precedes the onset of embryo enlargement in lys3 mutants, suggesting that PBF suppresses embryo growth. We predicted the down-stream target genes of PBF in wheat and found them to be involved in a wide range of biological processes, including organ development and starch metabolism. Our work suggests that PBF may influence embryo size and endosperm starch synthesis via separate gene control networks.

4.
Genes (Basel) ; 10(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805740

RESUMO

EuAP2 genes are well-known for their role in flower development, a legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio , Mutação , Desenvolvimento Vegetal/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...