Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 123(51): 12802-16, 2001 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-11749538

RESUMO

The spectroscopic properties of the high-spin Fe(III)-alkylperoxo model complex [Fe(6-Me(3)TPA)(OH(x))(OO(t)Bu)](x)(+) (1; TPA = tris(2-pyridylmethyl)amine, (t)Bu = tert-butyl, x = 1 or 2) are defined and related to density functional calculations of corresponding models in order to determine the electronic structure and reactivity of this system. The Raman spectra of 1 show four peaks at 876, 842, 637, and 469 cm(-1) that are assigned with the help of normal coordinate analysis, and corresponding force constants have been determined to be 3.55 mdyn/A for the O-O and 2.87 mdyn/A for the Fe-O bond. Complex 1 has a broad absorption feature around 560 nm that is assigned to a charge-transfer (CT) transition from the alkylperoxo to a t(2g) d orbital of Fe(III) with the help of resonance Raman profiles and MCD spectroscopy. An additional contribution to the Fe-O bond arises from a sigma interaction between and an e(g) d orbital of iron. The electronic structure of 1 is compared to the related low-spin model complex [Fe(TPA)(OH(x))(OO(t)Bu)](x)(+) and the reaction coordinate for O-O homolysis is explored for both the low-spin and the high-spin Fe(III)-alkylperoxo systems. Importantly, there is a barrier for homolytic cleavage of the O-O bond on the high-spin potential energy surface that is not present for the low-spin complex, which is therefore nicely set up for O-O homolysis. This is reflected by the electronic structure of the low-spin complex having a strong Fe-O and a weak O-O bond due to a strong Fe-O sigma interaction. In addition, the reaction coordinate of the Fe-O homolysis has been investigated, which is a possible decay pathway for the high-spin system, but which is thermodynamically unfavorable for the low-spin complex.


Assuntos
Compostos Férricos/química , Oxigênio/química , Piridinas/química , Radicais Livres/química , Modelos Moleculares , Oxirredução , Espectrofotometria Ultravioleta , Análise Espectral Raman/métodos , Vibração , terc-Butil Hidroperóxido/química
3.
J Am Chem Soc ; 123(34): 8271-90, 2001 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-11516278

RESUMO

The spectroscopic properties, electronic structure, and reactivity of the low-spin Fe(III)-alkylperoxo model complex [Fe(TPA)(OH(x))(OO(t)Bu)](x+) (1; TPA = tris(2-pyridylmethyl)amine, (t)Bu = tert-butyl, x = 1 or 2) are explored. The vibrational spectra of 1 show three peaks that are assigned to the O-O stretch (796 cm(-1)), the Fe-O stretch (696 cm(-)(1)), and a combined O-C-C/C-C-C bending mode (490 cm(-1)) that is mixed with upsilon(FeO). The corresponding force constants have been determined to be 2.92 mdyn/A for the O-O bond which is small and 3.53 mdyn/A for the Fe-O bond which is large. Complex 1 is characterized by a broad absorption band around 600 nm that is assigned to a charge-transfer (CT) transition from the alkylperoxo pi*(upsilon) to a t(2g) d orbital of Fe(III). This metal-ligand pi bond is probed by MCD and resonance Raman spectroscopies which show that the CT state is mixed with a ligand field state (t(2g) --> e(g)) by configuration interaction. This gives rise to two intense transitions under the broad 600 nm envelope with CT character which are manifested by a pseudo-A term in the MCD spectrum and by the shapes of the resonance Raman profiles of the 796, 696, and 490 cm(-1) vibrations. Additional contributions to the Fe-O bond arise from sigma interactions between mainly O-O bonding donor orbitals of the alkylperoxo ligand and an e(g) d orbital of Fe(III), which explains the observed O-O and Fe-O force constants. The observed homolytic cleavage of the O-O bond of 1 is explored with experimentally calibrated density functional (DFT) calculations. The O-O bond homolysis is found to be endothermic by only 15 to 20 kcal/mol due to the fact that the Fe(IV)=O species formed is highly stabilized (for spin states S = 1 and 2) by two strong pi and a strong sigma bond between Fe(IV) and the oxo ligand. This low endothermicity is compensated by the entropy gain upon splitting the O-O bond. In comparison, Cu(II)-alkylperoxo complexes studied before [Chen, P.; Fujisawa, K.; Solomon, E. I. J. Am. Chem. Soc. 2000, 122, 10177] are much less suited for O-O bond homolysis, because the resulting Cu(III)=O species is less stable. This difference in metal-oxo intermediate stability enables the O-O homolysis in the case of iron but directs the copper complex toward alternative reaction channels.


Assuntos
Compostos Férricos/química , Oxigênio/química , Dicroísmo Circular , Modelos Moleculares , Estrutura Molecular , Peróxidos/química , Espectrofotometria Ultravioleta , Análise Espectral Raman
4.
Inorg Chem ; 40(15): 3656-69, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-11442362

RESUMO

Spectroscopy has played a major role in the definition of structure/function correlations in bioinorganic chemistry. The importance of spectroscopy combined with electronic structure calculations is clearly demonstrated by the non-heme iron enzymes. Many members of this large class of enzymes activate dioxygen using a ferrous active site that has generally been difficult to study with most spectroscopic methods. A new spectroscopic methodology has been developed utilizing variable temperature, variable field magnetic circular dichroism, which enables one to obtain detailed insight into the geometric and electronic structure of the non-heme ferrous active site and probe its reaction mechanism on a molecular level. This spectroscopic methodology is presented and applied to a number of key mononuclear non-heme iron enzymes leading to a general mechanistic strategy for O2 activation. These studies are then extended to consider the new features present in the binuclear non-heme iron enzymes and applied to understand (1) the mechanism of the two electron/coupled proton transfer to dioxygen binding to a single iron center in hemerythrin and (2) structure/function correlations over the oxygen-activating enzymes stearoyl-ACP Delta9-desaturase, ribonucleotide reductase, and methane monooxygenase. Electronic structure/reactivity correlations for O2 activation by non-heme relative to heme iron enzymes will also be developed.


Assuntos
Ferroproteínas não Heme/química , Animais , Distinções e Prêmios , Sítios de Ligação , Química Bioinorgânica/história , História do Século XX , História do Século XXI , Humanos , Ferroproteínas não Heme/metabolismo , Sociedades Científicas , Estados Unidos
5.
J Am Chem Soc ; 123(3): 442-54, 2001 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-11456546

RESUMO

X-ray absorption spectroscopy (XAS) at the sulfur ( approximately 2470 eV) and chlorine ( approximately 2822 eV) K-edges has been applied to a series of 4Fe-4S model complexes. These are compared to 2Fe-2S model complexes to obtain insight into the localized ground state in the mixed-valence dimer versus the delocalized ground state in the mixed-valence tetramer. The preedges of hypothetical delocalized mixed-valence dimers [Fe(2)S(2)](+) are estimated using trends from experimental data and density functional calculations, for comparison to the delocalized mixed-valence tetramer [Fe(4)S(4)](2+). The differences between these two mixed-valence sites are due to the change of the sulfide-bridging mode from micro(2) to micro(3). The terminal chloride and thiolate ligands are used as spectator ligands for the electron density of the iron center. From the intensity of the preedge, the covalency of the terminal ligands is found to increase in the tetramer as compared to the dimer. This is associated with a higher effective nuclear charge on the iron in the tetramer (derived from the energies of the preedge). The micro(3)-bridging sulfide in the tetramer has a reduced covalency per bond (39%) as compared to the micro(2)-bridging sulfide in the dimer (51%). A simple perturbation model is used to derive a quadratic dependence of the superexchange coupling constant J on the covalency of the metal ions with the bridging ligands. This relationship is used to estimate the superexchange contribution in the tetramer (J = -156 cm(-)(1)) as compared to the mixed-valence dimer (J = -360 cm(-)(1)). These results, combined with estimates for the double exchange and the vibronic coupling contributions of the dimer sub-site of the tetramer, lead to a delocalized S(t) = (9)/(2) spin ground state for the mixed-valence dimer in the tetramer. Thus, the decrease in the covalency, hence the superexchange pathway associated with changing the bridging mode of the sulfides from micro(2) to micro(3) on going from the dimer to the tetramer, significantly contributes to the delocalization of the excess electron over the dimer sub-site in the tetramer.


Assuntos
Ferro/química , Enxofre/química , Sítios de Ligação , Dimerização , Elétrons , Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Ligantes , Estrutura Molecular , Rubredoxinas/química , Difração de Raios X
7.
J Am Chem Soc ; 123(21): 4938-50, 2001 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-11457321

RESUMO

Spectroscopically calibrated DFT is used to investigate the reaction coordinate of O(2) binding to Hemocyanin (Hc). A reaction path is calculated in which O(2) approaches the binuclear copper site with increasing metal-ligand overlap, which switches the coordination mode from end-on eta(1)-eta(1), to mu-eta(1):eta(2), then to butterfly, and finally to the planar [Cu(2)(mu-eta(2):eta(2)O(2))] structure. Analysis of the electronic structures during O(2) binding reveals that simultaneous two-electron transfer (ET) takes place. At early stages of O(2) binding the energy difference between the triplet and the singlet state is reduced by charge transfer (CT), which delocalizes the unpaired electrons and thus lowers the exchange stabilization onto the separated copper centers. The electron spins on the copper(II) ions are initially ferromagnetically coupled due to close to orthogonal magnetic orbital pathways through the dioxygen bridging ligand, and a change in the structure of the Cu(2)O(2) core turns on the superexchange coupling between the coppers. This favors the singlet state over the triplet state enabling intersystem crossing. Comparison with mononuclear model complexes indicates that the protein matrix holds the two copper(I) centers in close proximity, which enthalpically and entropically favors O(2) binding due to destabilization of the reduced binuclear site. This also allows regulation of the enthalpy by the change of the Cu--Cu distance in deoxyHc, which provides an explanation for the O(2) binding cooperativity in Hc. These results are compared to our earlier studies of Hemerythrin (Hr) and a common theme emerges where the spin forbiddeness of O(2) binding is overcome through delocalization of unpaired electrons onto the metal centers and the superexchange coupling of the metal centers via a ligand bridge.


Assuntos
Hemocianinas/análogos & derivados , Hemocianinas/metabolismo , Oxigênio/metabolismo , Calibragem , Modelos Moleculares , Ligação Proteica
8.
J Am Chem Soc ; 123(30): 7388-98, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11472170

RESUMO

Using a single ferrous active site, clavaminate synthase 2 (CS2) activates O(2) and catalyzes the hydroxylation of deoxyguanidinoproclavaminic acid (DGPC), the oxidative ring closure of proclavaminic acid (PC), and the desaturation of dihydroclavaminic acid (and a substrate analogue, deoxyproclavaminic acid (DPC)), each coupled to the oxidative decarboxylation of cosubstrate, alpha-ketoglutarate (alpha-KG). CS2 can also catalyze an uncoupled decarboxylation of alpha-KG both in the absence and in the presence of substrate, which results in enzyme deactivation. Resting CS2/Fe(II) has a six-coordinate Fe(II) site, and alpha-KG binds to the iron in a bidentate mode. The active site becomes five-coordinate only when both substrate and alpha-KG are bound, the latter still in a bidentate mode. Absorption, CD, MCD, and VTVH MCD studies of the interaction of CS2 with DGPC, PC, and DPC provide significant molecular level insight into the structure/function correlations of this multifunctional enzyme. There are varying amounts of six-coordinate ferrous species in the substrate complexes, which correlate to the uncoupled reaction. Five-coordinate ferrous species with similar geometric and electronic structures are present for all three substrate/alpha-KG complexes. Coordinative unsaturation of the Fe(II) in the presence of both cosubstrate and substrate appears to be critical for the coupling of the oxidative decarboxylation of alpha-KG to the different substrate oxidation reactions. In addition to the substrate orientation relative to the open coordination position on the iron site, it is hypothesized that the enzyme can affect the nature of the reactivity by further regulating the binding energy of the water to the ferrous species in the enzyme/succinate/product complex.


Assuntos
Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Ferroproteínas não Heme/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Oxigenases de Função Mista/química , Modelos Moleculares , Ferroproteínas não Heme/química , Espectroscopia de Luz Próxima ao Infravermelho , Especificidade por Substrato
9.
J Am Chem Soc ; 123(27): 6591-9, 2001 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-11439045

RESUMO

Laccase is a multicopper oxidase that contains four Cu ions, one type 1, one type 2, and a coupled binuclear type 3 Cu pair. The type 2 and type 3 centers form a trinuclear Cu cluster that is the active site for O(2) reduction to H(2)O. To examine the reaction between the type 2/type 3 trinuclear cluster and dioxygen, the type 1 Cu was removed and replaced with Hg(2+), producing the T1Hg derivative. When reduced T1Hg laccase is reacted with dioxygen, a peroxide intermediate (P) is formed. The present study examines the kinetics and mechanism of formation and decay of P in T1HgLc. The formation of P was found to be independent of pH and did not involve a kinetic solvent isotope effect, indicating that no proton is involved in the rate-determining step of formation of P. Alternatively, pH and isotope studies on the decay of P revealed that a proton enhances the rate of decay by 10-fold at low pH. This process shows an inverse k(H)/k(D) kinetic solvent isotope effect and involves protonation of a nearby residue that assists in catalysis, rather than direct protonation of the peroxide. Decay of P also involves a significant oxygen isotope effect (k(16)O(2)/k(18)O(2)) of 1.11 +/- 0.05, indicating that reductive cleavage of the O-O bond is the rate-determining step in the decay of P. The activation energy for this process was found to be approximately 9.0 kcal/mol. The exceptionally slow rate of decay of P is explained by the fact that this process involves a 1e(-) reductive cleavage of the O-O bond and there is a large Franck-Condon barrier associated with this process. Alternatively, the 2e(-) reductive cleavage of the O-O bond has a much larger driving force which minimizes this barrier and accelerates the rate of this reaction by approximately 10(7) in the native enzyme. This large difference in rate for the 2e(-) versus 1e(-) process supports a molecular mechanism for multicopper oxidases in which O(2) is reduced to H(2)O in two 2e(-) steps.


Assuntos
Oxirredutases/metabolismo , Oxigênio/metabolismo , Peróxidos/metabolismo , Hidrólise , Cinética , Lacase , Oxirredução , Isótopos de Oxigênio/metabolismo , Prótons , Temperatura
10.
J Am Chem Soc ; 123(23): 5444-52, 2001 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-11389625

RESUMO

Ligand K-edge X-ray absorption spectroscopy (XAS) provides a direct experimental probe of ligand-metal bonding. In previous studies, this method has been applied to mononuclear Fe-S and binuclear 2Fe-2S model compounds as well as to rubredoxins and the Rieske protein. These studies are now extended to the oxidized and reduced forms of ferredoxin I from spinach. Because of its high instability, the mixed-valence state was generated electrochemically in the protein matrix, and ligand K-edge absorption spectra were recorded using an XAS spectroelectrochemical cell. The experimental setup is described. The XAS edge data are analyzed to independently determine the covalencies of the iron-sulfide and -thiolate bonds. The results are compared with those obtained previously for the Rieske protein and for 2Fe-2S model compounds. It is found that the sulfide covalency is significantly lower in oxidized FdI compared to that of the oxidized model complex. This decrease is interpreted in terms of H bonding present in the protein, and its contribution to the reduction potential E degrees is estimated. Further, a significant increase in covalency for the Fe(III)-sulfide bond and a decrease of the Fe(II)-sulfide bond are observed in the reduced Fe(III)Fe(II) mixed-valence species compared to those of the Fe(III)Fe(III) homovalent site. This demonstrates that, upon reduction, the sulfide interactions with the ferrous site decrease, allowing greater charge donation to the remaining ferric center. That is the dominant change in electronic structure of the Fe(2)S(2)RS(4) center upon reduction and can contribute to the redox properties of this active site.


Assuntos
Ferredoxinas/química , Ferro/química , Enxofre/química , Eletroquímica , Ligantes , Modelos Moleculares , Oxirredução , Análise Espectral/métodos , Spinacia oleracea/química , Raios X
11.
J Am Chem Soc ; 123(23): 5507-17, 2001 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-11389633

RESUMO

Fet3p is a multicopper oxidase recently isolated from the yeast, Saccharomyces cerevisiae. Fet3p is functionally homologous to ceruloplasmin (Cp) in that both are ferroxidases. However, by sequence homology Fet3p is more similar to fungal laccase, and both contain a type 1 Cu site that lacks the axial methionine ligand present in the functional type 1 sites of Cp. To determine the contribution of the electronic structure of the type 1 Cu site of Fet3p to the ferroxidase mechanism, we have examined the absorption, circular dichroism, magnetic circular dichroism, electron paramagnetic resonance, and resonance Raman spectra of wild-type Fet3p and type 1 and type 2 Cu-depleted mutants. The spectroscopic features of the type 1 Cu site of Fet3p are nearly identical to those of fungal laccase, indicating a very similar three-coordinate geometry. We have also examined the reactivity of the type 1 Cu site by means of redox titrations and stopped-flow kinetics. From poised potential redox titrations, the E degrees of the type 1 Cu site is 427 mV, which is low for a three-coordinate type 1 Cu site. The kinetics of reduction of the type 1 Cu sites of four different multicopper oxidases with two different substrates were compared. The type 1 site of a plant laccase (Rhus vernicifera) is reduced moderately slowly by both Fe(II) and a bulky organic substrate, 1,4-hydroquinone (with 6 equiv of substrate, k(obs) = 0.029 and 0.013 s(-)(1), respectively). On the other hand, the type 1 site of a fungal laccase (Coprinus cinereus) is reduced very rapidly by both substrates (k(obs) > 23 s(-)(1)). In contrast, both Fet3p and Cp are rapidly reduced by Fe(II) (k(obs) > 23 s(-)(1)), but only very slowly by 1,4-hydroquinone (10- and 100-fold more slowly than plant laccase, respectively). Semiclassical theory is used to analyze the origin of these differences in reactivity in terms of type 1 Cu site accessibility to specific substrates.


Assuntos
Ceruloplasmina/química , Cobre/química , Saccharomyces cerevisiae/química , Ceruloplasmina/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Lacase , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae , Relação Estrutura-Atividade , Especificidade por Substrato
12.
J Am Chem Soc ; 123(24): 5757-67, 2001 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-11403610

RESUMO

To evaluate the importance of the electronic structure of Cu(A) to its electron-transfer (ET) function, a quantitative description of the ground-state wave function of the mixed-valence (MV) binuclear Cu(A) center engineered into Pseudomonas aeruginosa azurin has been developed, using a combination of S K-edge and Cu L-edge X-ray absorption spectroscopies (XAS). Parallel descriptions have been developed for a binuclear thiolate-bridged MV reference model complex ([(L(i)(PrdacoS)Cu)(2)](+)) and a homovalent (II,II) analogue ([L(i)(Pr2tacnS)Cu)(2)](2+), where L(i)(PrdacoS) and L(i)(Pr2tacnS) are macrocyclic ligands with attached thiolates that bridge the Cu ions. Previous studies have qualitatively defined the ground-state wave function of Cu(A) in terms of ligand field effects on the orbital orientation and the presence of a metal--metal bond. The studies presented here provide further evidence for a direct Cu--Cu interaction and, importantly, experimentally quantify the covalency of the ground-state wave function. The experimental results are further supported by DFT calculations. The nature of the ground-state wave function of Cu(A) is compared to that of the well-defined blue copper site in plastocyanin, and the importance of this wave function to the lower reorganization energy and ET function of Cu(A) is discussed. This wave function incorporates anisotropic covalency into the intra- and intermolecular ET pathways in cytochrome c oxidase. Thus, the high covalency of the Cys--Cu bond allows a path through this ligand to become competitive with a shorter His path in the intramolecular ET from Cu(A) to heme a and is particularly important for activating the intermolecular ET path from heme c to Cu(A).


Assuntos
Cobre/química , Metaloproteínas/química , Azurina/química , Transporte de Elétrons , Ligantes , Modelos Moleculares , Plastocianina/química , Pseudomonas aeruginosa , Teoria Quântica , Análise Espectral , Raios X
14.
Curr Opin Chem Biol ; 5(2): 176-87, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11282345

RESUMO

Spectroscopic methods covering many energy regions together provide complementary insight into metalloenzyme active sites. These methods probe geometric and electronic structure and define these contributions to reactivity. Two recent advances--determination of the polarizations of electronic transitions in solution using magnetic circular dichroism, electron paramagnetic resonance and quantum chemistry, and experimental estimation of covalency using metal L-edges and ligand K-edges--are particularly important.


Assuntos
Química Bioinorgânica , Metaloproteínas/análise , Análise Espectral/tendências , Sítios de Ligação/fisiologia , Bleomicina/análise , Bleomicina/química , Dicroísmo Circular , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ligantes , Metaloproteínas/química , Metais/química , Teoria Quântica , Análise Espectral/métodos
15.
Inorg Chem ; 40(4): 687-702, 2001 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-11225111

RESUMO

Magnetic circular dichroism (MCD) and absorption spectroscopies have been used to probe the electronic structure of [PPh4][MoO(p-SC6H4X)4] (X = H, Cl, OMe) and [PPh4][MoO(edt)2] complexes (edt = ethane-1,2-dithiolate). The results of density functional calculations (DFT) on [MoO(SMe)4]- and [MoO(edt)2]- model complexes were used to provide a framework for the interpretation of the spectra. Our analysis shows that the lowest energy transitions in [MoVOS4] chromophores (S4 = sulfur donor ligand) result from S-->Mo charge transfer transitions from S valence orbitals that lie close to the ligand field manifold. The energies of these transitions are strongly dependent on the orientation of the S lone-pair orbitals with respect to the Mo atom that is determined by the geometry of the ligand backbone. Thus, the lowest energy transition in the MCD spectrum of [PPh4][MoO(p-SC6H4X)4] (X = H) occurs at 14,800 cm-1, while that in [PPh4][MoO(edt)2] occurs at 11,900 cm-1. The identification of three bands in the absorption spectrum of [PPh4][MoO(edt)2] arising from LMCT from S pseudo-sigma combinations to the singly occupied Mo 4d orbital in the xy plane suggests that there is considerable covalency in the ground-state electronic structures of [MoOS4] complexes. DFT calculations on [MoO(SMe)4]- reveal that the singly occupied HOMO is 53% Mo 4dxy and 35% S p for the equilibrium C4 geometry. For [MoO(edt)2]- the steric constraints imposed by the edt ligands result in the S pi orbitals being of similar energy to the Mo 4d manifold. Significant S pseudo-sigma and pi donation may also weaken the Mo identical to O bond in [MoOS4] centers, a requirement for facile active site regeneration in the catalytic cycle of the DMSO reductases. The strong dependence of the energies of the bands in the absorption and MCD spectra of [PPh4][MoO(p-SC6H4X)4] (X = H, Cl, OMe) and [PPh4][MoO(edt)2] on the ligand geometry suggests that the structural features of the active sites of the DMSO reductases may result in an electronic structure that is optimized for facile oxygen atom transfer.


Assuntos
Dicroísmo Circular , Proteínas Ferro-Enxofre , Molibdênio/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Estrutura Molecular , Oxirredução , Oxirredutases/química
16.
Acc Chem Res ; 33(12): 859-68, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11123885

RESUMO

Ligand K-edge X-ray absorption spectroscopy (XAS) is a new experimental probe of the covalency of a metal-ligand bond. The intensity of the ligand pre-edge feature is proportional to the mixing of ligand orbitals into the metal d orbitals. The methodology to determine covalencies in one-electron (hole) and many-electron systems is described and demonstrated for a series of metal tetrachlorides [MCl(4)](n)(-), metal tetrathiolates [M(SR)(4)](n)(-), and dimeric iron-sulfur (Fe-S) clusters [Fe(2)S(2)(SR)(4)](2-). It is then applied to blue Cu proteins, the Cu(A) site, hydrogen bonding in Fe-S clusters, and the delocalization behavior in [2Fe-2S] vs [4Fe-4S] clusters. The covalencies determined in these studies provide important electronic structure insight into function.


Assuntos
Microanálise por Sonda Eletrônica/métodos , Metais/química , Ligantes , Estrutura Molecular
17.
J Biol Inorg Chem ; 5(1): 16-29, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10766432

RESUMO

The experimentally determined electronic structures of mononuclear blue Cu and binuclear Cu(A) centers are summarized and their relation to intra- and inter-protein electron transfer (ET) kinetics are described. Specific contributions of the electronic structures of these two broad classes of Cu ET proteins to H(AB), lambda, and deltaE degrees are discussed. Also, the role of the protein structure in determining key geometric features which define the electronic structures of the metal sites in these proteins is considered.


Assuntos
Proteínas de Bactérias/química , Transporte de Elétrons , Modelos Moleculares
19.
Biochemistry ; 38(34): 11093-102, 1999 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-10460165

RESUMO

Chicken ceruloplasmin has been previously reported to display a number of key differences relative to human ceruloplasmin: a lower copper content and a lack of a type 2 copper signal by electron paramagnetic resonance (EPR) spectroscopy. We have studied the copper sites of chicken ceruloplasmin in order to probe the origin of these differences, focusing on two forms of the enzyme: "resting" (as isolated by a fast, one-step procedure) and "peroxide-oxidized". From X-ray absorption, EPR, and UV/visible absorption spectroscopies, we have shown that all of the copper sites are oxidized in peroxide-oxidized chicken ceruloplasmin and that none of the type 1 copper sites display the EPR features typical for type 1 copper sites that lack an axial methionine. In the resting form, the type 2 copper center is reduced. Upon oxidation, it does not appear in the EPR spectrum at 77 K, but it can be observed by using magnetic susceptibility, EPR at approximately 8 K, and magnetic circular dichroism spectroscopy. It displays unusually fast relaxation, indicative of coupling with the adjacent type 3 copper pair of the trinuclear copper cluster. From reductive titrations, we have found that the reduction potential of the type 2 center is higher than those of the other copper sites, thus explaining why it is reduced in the resting form. These results provide new insight into the nature of the additional type 1 copper sites and the redox distribution among copper sites in the different ceruloplasmins relative to other multicopper oxidases.


Assuntos
Ceruloplasmina/química , Cobre/química , Animais , Ceruloplasmina/metabolismo , Galinhas , Dicroísmo Circular , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Cinética , Magnetismo , Substâncias Redutoras , Espectrofotometria Ultravioleta , Análise Espectral , Síncrotrons , Termodinâmica , Raios X
20.
J Biol Chem ; 274(18): 12372-5, 1999 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-10212209

RESUMO

Trametes villosa laccase was mutated on a tetrapeptide segment near the type 1 site. The mutations F463M and F463L were at the position corresponding to the type 1 copper axial methionine (M517) ligand in Zucchini ascorbate oxidase. The mutations E460S and A461E were near the T1 copper site. The mutated Trametes laccases were expressed in an Aspergillus oryzae host and characterized. The E460S mutation failed to produce a transformant with meaningful expression. The F463L and A461E mutations did not significantly alter the molecular and enzymological properties of the laccase. In contrast, the F463M mutation resulted in a type 1 copper site with an EPR signal intermediate between that of the wild type laccase and plastocyanin, an altered UV-visible spectrum, and a decreased redox potential (by 0.1 V). In oxidizing phenolic substrate, the mutation led to a more basic optimal pH as well as an increase in kcat and Km. These effects are attributed to a significant perturbation of the T1 copper center caused by the coordination of the axial methionine (M463) ligand.


Assuntos
Basidiomycota/enzimologia , Cobre/metabolismo , Oxirredutases/genética , Sequência de Bases , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Lacase , Mutagênese Sítio-Dirigida , Oxirredutases/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...