Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(33): 25682-25692, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27502565

RESUMO

One of the challenges in electrocatalysis is the adequate dispersion of the catalyst on an appropriate porous support matrix, being up to now the most commonly used the carbon-based supports. To overcome this challenge, carbon supports must first be functionalized to guide the catalyst's nucleation, thereby, improving the dispersion and allowing the use of smaller amount of the catalyst material to achieve a higher electrochemically active surface area. This study present the effect of functionalized Vulcan carbon XC72 (FVC) and functionalized Black Pearl carbon (FBPC) as supports on the catalytic activity of decorated Fe2O3 with Pt. Both carbons were functionalized with HNO3 and subsequently treated with ethanolamine. Fe2O3 nanoparticles were synthesized by chemical reduction and decorated with platinum by epitaxial growth. Pt and Fe2O3 structural phases were identified by XRD and XPS; the Pt content was measured by XPS, and results showed to a high Pt content in Fe2O3-Pt/FBPC. TEM micrographs reveal nanoparticles with an average size of 2 nm in both supported catalysts. The Fe2O3-Pt/FVC catalyst presents the highest specific activity and mass activity, 0.21 mA cm-2Pt and 140 mA mgPt-1, respectively, associated to the appropriate distribution of platinum on the Fe2O3 nanoparticles.


Assuntos
Carbono/química , Compostos Férricos/química , Oxigênio/química , Platina/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Catálise , Eletrólise , Oxirredução
2.
Phys Chem Chem Phys ; 17(42): 28286-97, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25942590

RESUMO

Theoretical/computational methods have been extensively applied to screen possible nano-structures attempting to maximize catalytic and stability properties for applications in electrochemical devices. This work shows that the method used to model core@shell structures is of fundamental importance in order to truly represent the physicochemical changes arising from the formation of a core-shell structure. We demonstrate that using a slab approach for modelling nanoparticles the oxygen adsorption energies are qualitatively well represented. Although this is a good descriptor for the catalytic activity, huge differences are found for the calculated surface stability between the results of a nano-cluster and those of a slab approach. Moreover, for the slab method depending on the geometric properties of the core and their similarity to the elements of the core or shell, contradictory effects are obtained. In order to determine the changes occurring as the number of layers and nano particle size are increased, clusters of Ni@Pt from 13 to 260 atoms were constructed and analyzed in terms of geometric parameters, oxygen adsorption, and dissolution potential shift. It is shown that the results of modelling the Ni@Pt nanoparticles with a cluster approach are in good agreement with experimental geometrical parameters, catalytic activity, and stability of a carefully prepared series of Ni@Pt nanostructures where the shell thickness is systematically changed. The maximum catalytic activity and stability are found for a monolayer of Pt whereas adding a second and third layer the behavior is almost the same than that in pure Pt nanoparticles.

3.
Micron ; 68: 164-175, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25240633

RESUMO

The recent development of atomic resolution, low dose-rate electron microscopy allows investigating 2D materials as well as catalytic nano particles without compromising their structural integrity. For graphene and a variety of nanoparticle compositions, it is shown that a critical dose rate exists of <100 e(-)/Å(2) s at 80 keV of electron acceleration that allows maintaining the genuine object structures including their surfaces and edges even if particles are only 3 nm large or smaller. Moreover, it is demonstrated that electron beam-induced phonon excitation from outside the field of view contributes to a contrast degradation in recorded images. These degradation effects can be eliminated by delivering electrons onto the imaged area, only, by using a Nilsonian illumination scheme in combination with a suitable aperture at the electron gun/monochromator assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...