Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645819

RESUMO

Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.

2.
Front Neurosci ; 17: 1117845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875642

RESUMO

Introduction: There is clinical evidence of neurological manifestations in coronavirus disease-19 (COVID-19). However, it is unclear whether differences in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/spike protein (SP) uptake by cells of the cerebrovasculature contribute to significant viral uptake to cause these symptoms. Methods: Since the initial step in viral invasion is binding/uptake, we used fluorescently labeled wild type and mutant SARS-CoV-2/SP to study this process. Three cerebrovascular cell types were used (endothelial cells, pericytes, and vascular smooth muscle cells), in vitro. Results: There was differential SARS-CoV-2/SP uptake by these cell types. Endothelial cells had the least uptake, which may limit SARS-CoV-2 uptake into brain from blood. Uptake was time and concentration dependent, and mediated by angiotensin converting enzyme 2 receptor (ACE2), and ganglioside (mono-sialotetrahexasylganglioside, GM1) that is predominantly expressed in the central nervous system and the cerebrovasculature. SARS-CoV-2/SPs with mutation sites, N501Y, E484K, and D614G, as seen in variants of interest, were also differentially taken up by these cell types. There was greater uptake compared to that of the wild type SARS-CoV-2/SP, but neutralization with anti-ACE2 or anti-GM1 antibodies was less effective. Conclusion: The data suggested that in addition to ACE2, gangliosides are also an important entry point of SARS-CoV-2/SP into these cells. Since SARS-CoV-2/SP binding/uptake is the initial step in the viral penetration into cells, a longer exposure and higher titer are required for significant uptake into the normal brain. Gangliosides, including GM1, could be an additional potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.

3.
Commun Biol ; 4(1): 1318, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811493

RESUMO

While there is SARS-CoV-2 multiorgan tropism in severely infected COVID-19 patients, it's unclear if this occurs in healthy young individuals. In addition, for antibodies that target the spike protein (SP), it's unclear if these reduce SARS-CoV-2/SP multiorgan tropism equally. We used fluorescently labeled SP-NIRF to study viral behavior, using an in vivo dynamic imaging system and ex in vivo tissue analysis, in young mice. We found a SP body-wide biodistribution followed by a slow regional elimination, except for the liver, which showed an accumulation. SP uptake was highest for the lungs, and this was followed by kidney, heart and liver, but, unlike the choroid plexus, it was not detected in the brain parenchyma or CSF. Thus, the brain vascular barriers were effective in restricting the entry of SP into brain parenchyma in young healthy mice. While both anti-ACE2 and anti-SP antibodies suppressed SP biodistribution and organ uptake, anti-SP antibody was more effective. By extension, our data support the efficacy of these antibodies on SARS-CoV-2 multiorgan tropism, which could determine COVID-19 organ-specific outcomes.


Assuntos
Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , COVID-19 , Feminino , Camundongos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...