Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Probl Endokrinol (Mosk) ; 66(5): 48-60, 2020 Oct 24.
Artigo em Russo | MEDLINE | ID: mdl-33369372

RESUMO

BACKGROUND: Pathological low-energy (LE) vertebral compression fractures (VFs) are common complications of osteoporosis and predictors of subsequent LE fractures. In 84% of cases, VFs are not reported on chest CT (CCT), which calls for the development of an artificial intelligence-based (AI) assistant that would help radiology specialists to improve the diagnosis of osteoporosis complications and prevent new LE fractures. AIMS: To develop an AI model for automated diagnosis of compression fractures of the thoracic spine based on chest CT images. MATERIALS AND METHODS: Between September 2019 and May 2020 the authors performed a retrospective sampling study of ССТ images. The 160 of results were selected and anonymized. The data was labeled by seven readers. Using the morphometric analysis, the investigators received the following metric data: ventral, medial and dorsal dimensions. This was followed by a semiquantitative assessment of VFs degree. The data was used to develop the Comprise-G AI mode based on CNN, which subsequently measured the size of the vertebral bodies and then calculates the compression degree. The model was evaluated with the ROC curve analysis and by calculating sensitivity and specificity values. RESULTS: Formed data consist of 160 patients (a training group - 100 patients; a test group - 60 patients). The total of 2,066 vertebrae was annotated. When detecting Grade 2 and 3 maximum VFs in patients the Comprise-G model demonstrated sensitivity - 90,7%, specificity - 90,7%, AUC ROC - 0.974 on the 5-FOLD cross-validation data of the training dataset; on the test data - sensitivity - 83,2%, specificity - 90,0%, AUC ROC - 0.956; in vertebrae demonstrated sensitivity - 91,5%, specificity - 95,2%, AUC ROC - 0.981 on the cross-validation data; for the test data sensitivity - 79,3%, specificity - 98,7%, AUC ROC - 0.978. CONCLUSIONS: The Comprise-G model demonstrated high diagnostic capabilities in detecting the VFs on CCT images and can be recommended for further validation.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Inteligência Artificial , Fraturas por Compressão/diagnóstico , Humanos , Redes Neurais de Computação , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico
2.
Kardiologiia ; 60(9): 46-54, 2020 Oct 14.
Artigo em Russo | MEDLINE | ID: mdl-33131474

RESUMO

Aim        To compare assessments of epicardial adipose tissue (EAT) volumes obtained with a semi-automatic, physician-performed analysis and an automatic analysis using a machine-learning algorithm by data of low-dose (LDCT) and standard computed tomography (CT) of chest organs.Material and methods        This analytical, retrospective, transversal study randomly included 100 patients from a database of a united radiological informational service (URIS). The patients underwent LDCT as a part of the project "Low-dose chest computed tomography as a screening method for detection of lung cancer and other diseases of chest organs" (n=50) and chest CT according to a standard protocol (n=50) in outpatient clinics of Moscow. Each image was read by two radiologists on a Syngo. via VB20 workstation. In addition, each image was evaluated with a developed machine-learning algorithm, which provides a completely automatic measurement of EAT.Results   Comparison of EAT volumes obtained with chest LDCT and CT showed highly consistent results both for the expert-performed semi-automatic analyses (correlation coefficient >98 %) and between the expert layout and the machine-learning algorithm (correlation coefficient >95 %). Time of performing segmentation and volumetry on one image with the machine-learning algorithm was not longer than 40 sec, which was 30 times faster than the quantitative analysis performed by an expert and potentially facilitated quantification of the EAT volume in the clinical conditions.Conclusion            The proposed method of automatic volumetry will expedite the analysis of EAT for predicting the risk of ischemic heart disease.


Assuntos
Algoritmos , Aprendizado de Máquina , Tecido Adiposo/diagnóstico por imagem , Humanos , Moscou , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...