Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 142: 106659, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639525

RESUMO

A major goal of phylogenetic systematics is to understand both the patterns of diversification and the processes by which these patterns are formed. Few studies have focused on the ancient, species-rich Magnoliales clade and its diversification pattern. Within Magnoliales, the pantropically distributed Annonaceae are by far the most genus-rich and species-rich family-level clade, with c. 110 genera and c. 2,400 species. We investigated the diversification patterns across Annonaceae and identified traits that show varied associations with diversification rates using a time-calibrated phylogeny of 835 species (34.6% sampling) and 11,211 aligned bases from eight regions of the plastid genome (rbcL, matK, ndhF, psbA-trnH, trnL-F, atpB-rbcL, trnS-G, and ycf1). Twelve rate shifts were identified using BAMM: in Annona, Artabotrys, Asimina, Drepananthus, Duguetia, Goniothalamus, Guatteria, Uvaria, Xylopia, the tribes Miliuseae and Malmeeae, and the Desmos-Dasymaschalon-Friesodielsia-Monanthotaxis clade. TurboMEDUSA and method-of-moments estimator analyses showed largely congruent results. A positive relationship between species richness and diversification rate is revealed using PGLS. Our results show that the high species richness in Annonaceae is likely the result of recent increased diversification rather than the steady accumulation of species via the 'museum model'. We further explore the possible role of selected traits (habit, pollinator trapping, floral sex expression, pollen dispersal unit, anther septation, and seed dispersal unit) in shaping diversification patterns, based on inferences of BiSSE, MuSSE, HiSSE, and FiSSE analyses. Our results suggest that the liana habit, the presence of circadian pollinator trapping, androdioecy, and the dispersal of seeds as single-seeded monocarp fragments are closely correlated with higher diversification rates; pollen aggregation and anther septation, in contrast, are associated with lower diversification rates.


Assuntos
Annonaceae/classificação , Annonaceae/genética , Biodiversidade , Genoma de Planta , Filogenia , Plastídeos/genética
2.
Integr Org Biol ; 1(1): obz028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33791542

RESUMO

Although our inventory of Earth's biodiversity remains incomplete, we still require analyses using the Tree of Life to understand evolutionary and ecological patterns. Because incomplete sampling may bias our inferences, we must evaluate how future additions of newly discovered species might impact analyses performed today. We describe an approach that uses taxonomic history and phylogenetic trees to characterize the impact of past species discoveries on phylogenetic knowledge using patterns of branch-length variation, tree shape, and phylogenetic diversity. This provides a framework for assessing the relative completeness of taxonomic knowledge of lineages within a phylogeny. To demonstrate this approach, we use recent large phylogenies for amphibians, reptiles, flowering plants, and invertebrates. Well-known clades exhibit a decline in the mean and range of branch lengths that are added each year as new species are described. With increased taxonomic knowledge over time, deep lineages of well-known clades become known such that most recently described new species are added close to the tips of the tree, reflecting changing tree shape over the course of taxonomic history. The same analyses reveal other clades to be candidates for future discoveries that could dramatically impact our phylogenetic knowledge. Our work reveals that species are often added non-randomly to the phylogeny over multiyear time-scales in a predictable pattern of taxonomic maturation. Our results suggest that we can make informed predictions about how new species will be added across the phylogeny of a given clade, thus providing a framework for accommodating unsampled undescribed species in evolutionary analyses.

3.
Trends Plant Sci ; 21(12): 1008-1016, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789157

RESUMO

In eukaryotes, protein deacetylation is carried out by two well-conserved histone deacetylase (HDAC) families: RPD3/HDA1 and SIR2. Intriguingly, model plants such as Arabidopsis express an additional plant-specific HDAC family, termed type-2 HDACs (HD2s). Transcriptomic analyses from more than 1300 green plants generated by the 1000 plants (1KP) consortium showed that HD2s appeared early in green plant evolution, the first members being detected in several streptophyte green alga. The HD2 family has expanded via several rounds of successive duplication; members are expressed in all major green plant clades. Interestingly, angiosperm species express new HD2 genes devoid of a zinc-finger domain, one of the main structural features of HD2s. These variants may have been associated with the origin and/or the biology of the ovule/seed.


Assuntos
Histona Desacetilases/metabolismo , Proteínas de Plantas/metabolismo , Viridiplantae/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Proteínas de Plantas/genética , Viridiplantae/genética
4.
Heredity (Edinb) ; 114(3): 309-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25370212

RESUMO

Cytological studies have shown many newly formed allopolyploids (neoallopolyploids) exhibit chromosomal variation as a result of meiotic irregularities, but few naturally occurring neoallopolyploids have been examined. Little is known about how long chromosomal variation may persist and how it might influence the establishment and evolution of allopolyploids in nature. In this study we assess chromosomal composition in a natural neoallotetraploid, Tragopogon mirus, and compare it with T. miscellus, which is an allotetraploid of similar age (~40 generations old). We also assess whether parental gene losses in T. mirus correlate with entire or partial chromosome losses. Of 37 T. mirus individuals that were karyotyped, 23 (62%) were chromosomally additive of the parents, whereas the remaining 14 individuals (38%) had aneuploid compositions. The proportion of additive versus aneuploid individuals differed from that found previously in T. miscellus, in which aneuploidy was more common (69%; Fisher's exact test, P=0.0033). Deviations from parental chromosome additivity within T. mirus individuals also did not reach the levels observed in T. miscellus, but similar compensated changes were observed. The loss of T. dubius-derived genes in two T. mirus individuals did not correlate with any chromosomal changes, indicating a role for smaller-scale genetic alterations. Overall, these data for T. mirus provide a second example of prolonged chromosomal instability in natural neoallopolyploid populations.


Assuntos
Cromossomos de Plantas/genética , Genética Populacional , Poliploidia , Tragopogon/genética , DNA de Plantas/genética , Evolução Molecular , Rearranjo Gênico , Genoma de Planta , Cariótipo
5.
Heredity (Edinb) ; 114(3): 356-65, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25537492

RESUMO

To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.


Assuntos
Dosagem de Genes , Inativação Gênica , Genes de Plantas , Genes de RNAr , Tragopogon/genética , Metilação de DNA , Evolução Molecular , Dados de Sequência Molecular , Região Organizadora do Nucléolo , Poliploidia , Regiões Promotoras Genéticas , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , Deleção de Sequência
6.
J Evol Biol ; 25(12): 2470-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23163328

RESUMO

Tragopogon comprises approximately 150 described species distributed throughout Eurasia from Ireland and the UK to India and China with a few species in North Africa. Most of the species diversity is found in Eastern Europe to Western Asia. Previous phylogenetic analyses identified several major clades, generally corresponding to recognized taxonomic sections, although relationships both among these clades and among species within clades remain largely unresolved. These patterns are consistent with rapid diversification following the origin of Tragopogon, and this study addresses the timing and rate of diversification in Tragopogon. Using BEAST to simultaneously estimate a phylogeny and divergence times, we estimate the age of a major split and subsequent rapid divergence within Tragopogon to be ~2.6 Ma (and 1.7-5.4 Ma using various clock estimates). Based on the age estimates obtained with BEAST (HPD 1.7-5.4 Ma) for the origin of crown group Tragopogon and 200 estimated species (to accommodate a large number of cryptic species), the diversification rate of Tragopogon is approximately 0.84-2.71 species/Myr for the crown group, assuming low levels of extinction. This estimate is comparable in rate to a rapid Eurasian radiation in Dianthus (0.66-3.89 species/Myr), which occurs in the same or similar habitats. Using available data, we show that subclades of various plant taxa that occur in the same semi-arid habitats of Eurasia also represent rapid radiations occurring during roughly the same window of time (1.7-5.4 Ma), suggesting similar causal events. However, not all species-rich plant genera from the same habitats diverged at the same time, or at the same tempo. Radiations of several other clades in this same habitat (e.g. Campanula, Knautia, Scabiosa) occurred at earlier dates (45-4.28 Ma). Existing phylogenetic data and diversification estimates therefore indicate that, although some elements of these semi-arid communities radiated during the Plio-Pleistocene period, other clades sharing the same habitat appear to have diversified earlier.


Assuntos
Especiação Genética , Tragopogon/genética , Ásia , Europa (Continente) , Filogenia
7.
Artigo em Inglês | MEDLINE | ID: mdl-19687140

RESUMO

Multiple origins of the same polyploid species pose the question: Does evolution repeat itself in these independently formed lineages? Tragopogon is a unique evolutionary model for the study of recent and recurrent allopolyploidy. The allotetraploids T. mirus (T. dubius x T. porrifolius) and T. miscellus (T. dubius x T. pratensis) formed repeatedly following the introduction of three diploids to the United States. Concerted evolution has consistently occurred in the same direction (resulting in loss of T. dubius rDNA copies). Both allotetraploids exhibit homeolog loss, with the same genes consistently showing loss, and homeologs of T. dubius preferentially lost in both allotetraploids. We have also documented repeated patterns of tissue-specific silencing in multiple populations of T. miscellus. Hence, some aspects of genome evolution may be "hardwired," although the general pattern of loss is stochastic within any given population. On the basis of the study of F(1) hybrids and synthetics, duplicate gene loss and silencing do not occur immediately following hybridization or polyploidization, but gradually and haphazardly. Genomic approaches permit analysis of hundreds of loci to assess the frequency of homeolog loss and changes in gene expression. This methodology is particularly promising for groups such as Tragopogon for which limited genetic and genomic resources are available.


Assuntos
Evolução Biológica , Especiação Genética , Poliploidia , DNA de Plantas/genética , DNA Ribossômico/genética , Diploide , Evolução Molecular , Inativação Gênica , Genoma de Planta , Genômica , Hibridização Genética , Modelos Genéticos , Tragopogon/classificação , Tragopogon/genética , Estados Unidos
8.
Heredity (Edinb) ; 103(1): 73-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19277058

RESUMO

Whole-genome duplication (polyploidisation) is a widespread mechanism of speciation in plants. Over time, polyploid genomes tend towards a more diploid-like state, through downsizing and loss of duplicated genes (homoeologues), but relatively little is known about the timing of gene loss during polyploid formation and stabilisation. Several studies have also shown gene transcription to be affected by polyploidisation. Here, we examine patterns of gene loss in 10 sets of homoeologues in five natural populations of the allotetraploid Tragopogon miscellus that arose within the past 80 years following independent whole-genome duplication events. We also examine 44 first-generation synthetic allopolyploids of the same species. No cases of homoeologue loss arose in the first allopolyploid generation, but after 80 years, 1.6% of homoeologues were lost in natural populations. For seven homoeologue sets we also examined transcription, finding that 3.4% of retained homoeologues had been silenced in the natural populations, but none in the synthetic plants. The homoeologue losses and silencing events found were not fixed within natural populations and did not form a predictable pattern among populations. We therefore show haphazard loss and silencing of homoeologues, occurring within decades of polyploid formation in T. miscellus, but not in the initial generation.


Assuntos
Deleção de Genes , Inativação Gênica , Poliploidia , Tragopogon/genética , Genes Sintéticos , Genoma de Planta , Dados de Sequência Molecular
9.
Plant Dis ; 93(5): 546, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-30764159

RESUMO

An obviously unhealthy plant identified as Tragopogon mirus Ownbey (remarkable goatsbeard) was sent for diagnosis to the Division of Plant Industry (DPI), Gainesville, FL in May of 2008. T. mirus is a recently formed allotetraploid that has T. dubius Scop. and T. porrifolius L. (goatsbeard or salsify) as parents. The parents (family Asteraceae) are diploid and originate from Eurasia. They were introduced to the northwest United States in the early 1900s. The allotetraploid T. mirus, which does not occur in Eurasia, was discovered in 1949 and named in 1950. It has been found in the northwest states of Washington and Idaho. It has also been found in Arizona (4). The plant sent to the DPI was grown in a greenhouse for research purposes at the Botany Department of the University of Florida (Alachua County). Symptoms exhibited on the leaves included mottling, chlorotic and necrotic spots, and mild distortion. Epidermal leaf strips from a mottled leaf were stained with the Orange-Green protein stain and Azure A nucleic acid stain (1). With a light microscope, granular inclusions typical for Tomato spotted wilt virus (TSWV) (1) were seen in leaf strips from both stains. The remainder of the leaf was ground in buffer and tested serologically for TSWV by TSWV-specific ImmunoStrips (Agdia, Elkhart, IN). The ImmunoStrip was positive for the presence of TSWV. This test was confirmed by double-antibody sandwich-ELISA using antiserum and conjugate for TSWV (Agdia). Further serological testing of other Tragopogon species with similar symptoms growing in the same greenhouse revealed that T. miscellus (another recently formed allotetraploid found in the northwestern United States; parents T. dubius and T. pratensis), T. dubius, T. porrifolius, and T. pratensis were also infected with TSWV. Total RNA was extracted from symptomatic leaves of T. mirus, T. dubius, T. porrifolius, and T. miscellus. Reverse transcription-PCR was performed with universal tospovirus primers BR60 and BR65 that amplify part of the nucleocapsid protein gene (2). Target amplicons of 454 bp were produced for all four samples. The PCR product from T. porrifolius was cloned and sequenced. The resulting sequence (GenBank Accession No. FJ655913) shows high homology, 98%, to several isolates of the Tomato spotted wilt virus deposited in the GenBank (Accession Nos. AY870391, AY744477, and AF020659). T. porrifolius has been reported to be naturally infected with TSWV in Italy (3); however, to our knowledge, this is the first report of this virus in the allotetraploids T. mirus and T. miscellus and in the diploids T. dubius and T. pratensis. This report adds five new Asteraceae weeds to the list of possible reservoirs of TSWV in the United States. References: (1) J. R. Edwardson and R. G. Christie. Univ. Fla. Inst. Food Agric. Sci. Bull. 894. 1996. (2) M. Eiras et al. Fitopatol. Bras. 26:170, 2001. (3) G. Parrella et al. J. Plant Pathol. 85:227. 2003. (4) D. E. Soltis et al. Biol. J. Linn. Soc. 82:2004.

10.
Mol Ecol ; 17(23): 5157-74, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120994

RESUMO

Hybridization and/or incomplete sorting of ancestral polymorphism are commonly implicated to explain discordant phylogenetic analyses of closely related species complexes. One genus in which these phenomena have been suggested to have played major roles based on phylogenetic data is Conradina, a genus of mints (Lamiaceae) endemic to the southeastern USA containing several endangered species. The goals of this study were to use microsatellite data to better understand patterns of genetic structure in Conradina, to test hypotheses of recent or ancient hybridization and incomplete lineage sorting, and to clarify species boundaries. Individuals from 55 populations representing all Conradina species were genotyped using 10 microsatellite loci. Analyses of the patterns of genetic structure in Conradina revealed a clear differentiation of populations following recognized species boundaries, indicating that species have diverged from one another genetically and interspecific hybridization has not occurred recently. Neither ancient hybridization nor incomplete lineage sorting is supported as the sole cause of species nonmonophyly, suggesting that both may have contributed to patterns found in phylogenetic trees; however, analyses of other types of data may be more appropriate to distinguish between these two hypotheses. Because all described species appear to be valid entities, the current listing status of most endangered species of Conradina is appropriate; however, populations of Conradina canescens are genetically differentiated into three groups, each of which may merit species status, and several recently discovered populations of Conradina in Dunn's Creek State Park in Florida are highly differentiated genetically and also appear to represent a new species.


Assuntos
Especiação Genética , Hibridização Genética , Lamiaceae/genética , Teorema de Bayes , Conservação dos Recursos Naturais , DNA de Plantas/genética , Evolução Molecular , Genótipo , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos
11.
Mol Ecol Resour ; 8(2): 363-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21585793

RESUMO

We report the isolation of microsatellite loci from three species in the genus Conradina (Lamiaceae). To ensure their utility for multiple species, loci were screened for amplification and variability in all six Conradina species; 11 loci demonstrated high levels of amplification and polymorphism in most species. These 11 loci were characterized in 20 individuals from one population of Conradina brevifolia; alleles per locus ranged from five to 15, and observed heterozygosity ranged from 0.30 to 0.90. These microsatellites will be used to clarify species limits, detect interspecific hybridization, and understand the partitioning of genetic variation in each species of Conradina.

12.
Genetics ; 169(2): 931-44, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15654116

RESUMO

We investigated concerted evolution of rRNA genes in multiple populations of Tragopogon mirus and T. miscellus, two allotetraploids that formed recurrently within the last 80 years following the introduction of three diploids (T. dubius, T. pratensis, and T. porrifolius) from Europe to North America. Using the earliest herbarium specimens of the allotetraploids (1949 and 1953) to represent the genomic condition near the time of polyploidization, we found that the parental rDNA repeats were inherited in roughly equal numbers. In contrast, in most present-day populations of both tetraploids, the rDNA of T. dubius origin is reduced and may occupy as little as 5% of total rDNA in some individuals. However, in two populations of T. mirus the repeats of T. dubius origin outnumber the repeats of the second diploid parent (T. porrifolius), indicating bidirectional concerted evolution within a single species. In plants of T. miscellus having a low rDNA contribution from T. dubius, the rDNA of T. dubius was nonetheless expressed. We have apparently caught homogenization of rDNA repeats (concerted evolution) in the act, although it has not proceeded to completion in any allopolyploid population yet examined.


Assuntos
DNA Ribossômico/genética , Evolução Molecular , Matriz Nuclear/química , Poliploidia , Tragopogon/genética , Cromossomos de Plantas , DNA de Plantas , Diploide , Genes de RNAr , Genética Populacional , Genoma de Planta , Geografia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Polimorfismo Conformacional de Fita Simples , Mapeamento por Restrição , Sementes/crescimento & desenvolvimento , Tragopogon/citologia , Tragopogon/crescimento & desenvolvimento
13.
Ann Bot ; 95(1): 207-17, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15596468

RESUMO

BACKGROUND AND AIMS: DNA C-values in land plants (comprising bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms) vary approximately 1000-fold from approx. 0.11 to 127.4 pg. To understand the evolutionary significance of this huge variation it is essential to evaluate the phylogenetic component. Recent increases in C-value data (e.g. Plant DNA C-values database; release 2.0, January 2003; http://www.rbgkew.org.uk/cval/homepage.html) together with improved consensus of relationships between and within land plant groups makes such an analysis timely. METHODS: Insights into the distribution of C-values in each group of land plants were gained by superimposing available C-value data (4119 angiosperms, 181 gymnosperms, 63 monilophytes, 4 lycophytes and 171 bryophytes) onto phylogenetic trees. To enable ancestral C-values to be reconstructed for clades within land plants, character-state mapping with parsimony and MacClade was also applied. KEY RESULTS AND CONCLUSIONS: Different land plant groups are characterized by different C-value profiles, distribution of C-values and ancestral C-values. For example, the large ( approximately 1000-fold) range yet strongly skewed distribution of C-values in angiosperms contrasts with the very narrow 12-fold range in bryophytes. Further, character-state mapping showed that the ancestral genome sizes of both angiosperms and bryophytes were reconstructed as very small (i.e. < or =1.4 pg) whereas gymnosperms and most branches of monilophytes were reconstructed with intermediate C-values (i.e. >3.5, <14.0 pg). More in-depth analyses provided evidence for several independent increases and decreases in C-values; for example, decreases in Gnetaceae (Gymnosperms) and heterosperous water ferns (monilophytes); increases in Santalales and some monocots (both angiosperms), Pinaceae, Sciadopityaceae and Cephalotaxaceae (Gymnosperms) and possibly in the Psilotaceae + Ophioglossaceae clade (monilophytes). Thus, in agreement with several focused studies within angiosperm families and genera showing that C-values may both increase and decrease, it is apparent that this dynamic pattern of genome size evolution is repeated on a broad scale across land plants.


Assuntos
DNA de Plantas/genética , Evolução Molecular , Genoma de Planta , Plantas/genética , Briófitas/genética , Núcleo Celular/genética , Cycadopsida/genética , DNA de Plantas/análise , Magnoliopsida/genética , Filogenia
14.
Am J Bot ; 88(5): 883-93, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11353713

RESUMO

Chrysosplenium (Saxifragaceae) consists of 57 species widely distributed in temperate and arctic regions of the Northern Hemisphere, with two species restricted to the southern part of South America. Species relationships within the genus are highly problematic. The genus has traditionally been divided into two groups, sometimes recognized as sections (Oppositifolia and Alternifolia), based on leaf arrangement, or, alternatively, into 17 series. Based on morphological features, Hara suggested that the genus originated in South America and then subsequently migrated to the Northern Hemisphere. We conducted phylogenetic analyses of DNA sequences of the chloroplast gene matK for species of Chrysosplenium to elucidate relationships, test Hara's biogeographic hypothesis for the genus, and examine chromosomal and gynoecial diversification. These analyses revealed that both sections Oppositifolia and Alternifolia are monophyletic and form two large sister clades. Hence, leaf arrangement is a good indicator of relationships within this genus. Hara's series Pilosa and Macrostemon are each also monophyletic; however, series Oppositifolia, Alternifolia, and Nepalensia are clearly not monophyletic. MacClade reconstructions suggest that the genus arose in Eastern Asia, rather than in South America, with several independent migration events from Asia to the New World. In one well-defined subclade, species from eastern and western North America form a discrete clade, with Old World species as their sister group, suggesting that the eastern and western North American taxa diverged following migration to that continent. The South American species forms a clade with species from eastern Asia; this disjunction may be the result of ancient long-distance dispersal. Character mapping demonstrated that gynoecial diversification is dynamic, with reversals from inferior to half-inferior ovaries, as well as to ovaries that appear superior. Chromosomal evolution also appears to be labile with several independent origins of n = 12 (from an original number of n = 11) and multiple episodes of aneuploidy.

15.
Am J Bot ; 88(2): 196-205, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11222242

RESUMO

Lithophragma, comprising only ten species, encompasses a remarkable diversity of ovary positions, reported to range from inferior to superior. The structural homology of the gynoecium and developmental transformations associated with ovary diversification are investigated for Lithophragma. Scanning electron and light microscopy indicate that all species of Lithophragma have epigynous flowers. Lithophragma campanulatum, L. glabrum, and L. heterophyllum have ovaries that externally appear nearly superior, but are actually shallowly inferior or "pseudosuperior." The inferior ovaries of Lithophragma species can be conceptually divided into superior and inferior regions that meet at the point of perianth and androecial insertion. Static and ontogenetic allometry reveal that across the species of Lithophragma the lengths of these two ovary regions are coordinated. Ovary regions in mature flowers display an approximately linear relationship that can be expressed through the allometric equation SL = -0.5314 IL + 2.0348 (where SL and IL are the lengths of the superior and inferior regions of the ovary, respectively; r = 0.7683, df = 35, P = 2.45 × 10). Mapping ontogenetic allometries onto a recent phylogeny for Lithophragma shows that ovary position evolution is bidirectional and has shifted toward greater superiority in some species and greater inferiority in others.

16.
Am J Bot ; 88(2): 326-36, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11222253

RESUMO

Members of subfamily Gronovioideae are distinctive among Loasaceae in their androecial and gynoecial simplicity. The four genera of the subfamily differ, however, in chromosome number, floral novelties, and pollen exine sculpturing, which led to suggestions that the Gronovioideae were polyphyletic. Phylogenetic analyses based on sequences of the chloroplast gene matK and the internal transcribed spacer region (ITS) of nuclear rDNA have been conducted using parsimony and maximum likelihood methods to assess the monophyly of Gronovioideae and to determine the sister group relationships of gronovioid genera. The results show Gronovioideae are monophyletic and placed as the sister to Mentzelia. Within Gronovioideae, Petalonyx is sister to a clade consisting of Cevallia, Gronovia, and Fuertesia. Among the remaining Loasaceae, subfamily Mentzelioideae, as originally circumscribed, is paraphyletic. Subfamily Loasoideae is placed as the sister to the Gronovioideae-Mentzelia clade.

17.
Syst Biol ; 50(6): 817-47, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12116635

RESUMO

Rapid, ancient radiations pose one of the most difficult challenges for phylogenetic estimation. We used DNA sequence data of 9,006 aligned base pairs from five genes (chloroplast atpB, matK, rbcL, and 18S and 26S nrDNA) to elucidate relationships among major lineages of Saxifragales (angiosperms, eudicots). These relationships were poorly supported in previous studies, apparently because the lineages originated in rapid succession. Using an array of methods that explicitly incorporate assumptions about evolutionary process (weighted maximum parsimony, maximum likelihood, LogDet/paralinear transformed distances), we show that the initial diversification of Saxifragales was indeed rapid. We suggest that the poor resolution of our best phylogenetic estimate is not due to violations of assumptions or to combining data partitions having conflicting histories or processes. We show that estimated branch lengths during the initial diversification are exceedingly short, and we estimate that acquiring sufficient sequence data to resolve these relationships would require an extraordinary effort (approximately 10(7) bp), assuming a linear increase in branch support with branch length. However, our simulation of much larger data sets containing a distribution of phylogenetic signal similar to that of the five sampled gene sequences suggests a limit to achievable branch support. Using statistical tests of differences in the likelihoods of topologies, we evaluated whether the initial radiation of Saxifragales involved the simultaneous origin of major lineages. Our results are consistent with predictions that resolving the branching order of rapid, ancient radiations requires sampling characters that evolved rapidly at the time of the radiation but have since experienced a slower evolutionary rate.


Assuntos
Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Composição de Bases , DNA de Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/genética , Endorribonucleases/genética , Evolução Molecular , Genes de Plantas , Genoma de Planta , Modelos Genéticos , Nucleotidiltransferases/genética , Ribulose-Bifosfato Carboxilase/genética
18.
Mol Phylogenet Evol ; 15(3): 462-72, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10860654

RESUMO

Sequence data of the chloroplast gene rbcL were used to estimate the time of the well-known eastern Asian-eastern North American floristic disjunction. Sequence divergence of rbcL was examined for 22 species of 11 genera (Campsis, Caulophyllum, Cornus, Decumaria, Liriodendron, Menispermum, Mitchella, Pachysandra, Penthorum, Podophyllum, and Phryma) representing a diverse array of flowering plants occurring disjunctly in eastern Asia and eastern North America. Divergence times of putative disjunct species pairs were estimated from synonymous substitutions, using rbcL molecular clocks calibrated for Cornus. Relative rate tests were performed to assess rate constancy of rbcL evolution among lineages. Corrections of estimates of divergence times for each species pair were made based on rate differences of rbcL between Cornus and other species pairs. Results of these analyses indicate that the time of divergence of species pairs examined ranges from 12.56 +/- 4.30 million years to recent (<0.31 million years), with most within the last 10 million years (in the late Miocene and Pliocene). These results suggest that the isolation of most morphologically similar disjunct species in eastern Asia and eastern North America occurred during the global climatic cooling period that took place throughout the late Tertiary and Quaternary. This estimate is closely correlated with paleontological evidence and in agreement with the hypothesis that considers the eastern Asian-eastern North American floristic disjunction to be the result of the range restriction of a once more or less continuously distributed mixed mesophytic forest of the Northern Hemisphere that occurred during the late Tertiary and Quaternary. This implies that in most taxa the disjunction may have resulted from vicariance events. However, long-distance dispersal may explain the disjunct distribution of taxa with low divergence, such as Menispermum.


Assuntos
Evolução Molecular , Magnoliopsida/classificação , Magnoliopsida/genética , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase , Ásia , Modelos Genéticos , América do Norte , Paleontologia , Filogenia , Análise de Sequência de DNA , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 97(13): 7051-7, 2000 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-10860970

RESUMO

In 1950, G. Ledyard Stebbins devoted two chapters of his book Variation and Evolution in Plants (Columbia Univ. Press, New York) to polyploidy, one on occurrence and nature and one on distribution and significance. Fifty years later, many of the questions Stebbins posed have not been answered, and many new questions have arisen. In this paper, we review some of the genetic attributes of polyploids that have been suggested to account for the tremendous success of polyploid plants. Based on a limited number of studies, we conclude: (i) Polyploids, both individuals and populations, generally maintain higher levels of heterozygosity than do their diploid progenitors. (ii) Polyploids exhibit less inbreeding depression than do their diploid parents and can therefore tolerate higher levels of selfing; polyploid ferns indeed have higher levels of selfing than do their diploid parents, but polyploid angiosperms do not differ in outcrossing rates from their diploid parents. (iii) Most polyploid species are polyphyletic, having formed recurrently from genetically different diploid parents. This mode of formation incorporates genetic diversity from multiple progenitor populations into the polyploid "species"; thus, genetic diversity in polyploid species is much higher than expected by models of polyploid formation involving a single origin. (iv) Genome rearrangement may be a common attribute of polyploids, based on evidence from genome in situ hybridization (GISH), restriction fragment length polymorphism (RFLP) analysis, and chromosome mapping. (v) Several groups of plants may be ancient polyploids, with large regions of homologous DNA. These duplicated genes and genomes can undergo divergent evolution and evolve new functions. These genetic and genomic attributes of polyploids may have both biochemical and ecological benefits that contribute to the success of polyploids in nature.

20.
Am J Bot ; 87(1): 108-23, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10636834

RESUMO

Ceanothus comprises ∼55 morphologically and ecologically diverse species of woody perennials endemic to North America. Interpretations of the natural history of Ceanothus have served as a general model of evolution for woody perennials with simple entomophilous pollination systems, but these interpretations lacked explicit phylogenetic context. We used cladistic analysis of sequences of the chloroplast-encoded matK and the internal transcribed spacers (ITS) and 5.8S coding region of nuclear ribosomal DNA (nrDNA) to reconstruct the phylogeny of Ceanothus. The nuclear and organellar phylogenies exhibited very low levels of both topological and character congruence. Subgenera Ceanothus and Cerastes are monophyletic sister taxa in both phylogenies, but both data sets suffer from a lack of resolution below the level of subgenus. Lack of taxonomic congruence between the two data sets may be a result of introgression and/or lineage sorting. The ITS tree was accepted as the better estimate of a species phylogeny for Ceanothus, on the assumption that nuclear markers are less prone to introgression. Three of five polytypic species in the ITS data set were paraphyletic, and four of six polytypic species in the matK data set were paraphyletic. This study demonstrates the degree to which matched independent data sets can produce conflicting summaries of evolutionary history.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA