Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Sci Rep ; 14(1): 5504, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448687

RESUMO

The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.


Assuntos
Neutropenia Febril , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Criança , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Biomarcadores , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli
2.
Folia Microbiol (Praha) ; 69(2): 433-444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38261148

RESUMO

Tellurite resistance gene clusters have been identified in numerous pathogenic bacteria, including clinical isolates of Escherichia coli. The rareness of tellurium in host organisms and the noncontaminated environment raises a question about the true functionality of tellurite resistance gene clusters in pathogenesis and their possible contribution to bacterial fitness. The study aims to point out the beneficial effects of the tellurite resistance gene cluster of pathogenic bacteria to survive in ROS-rich environments. Here, we analysed the bacterial response to oxidative stress conditions with and without tellurite resistance gene clusters, which are composed of terWY1XY2Y3 and terZABCDEF genes. By measuring the levels of protein carbonylation, lipid peroxidation, and expression changes of oxidative stress genes upon oxidative stress, we propose a tellurite resistance gene cluster contribution to the elimination of oxidative damage, potentially increasing fitness and resistance to reactive oxygen species during macrophage attack. We have shown a different beneficial effect of various truncated versions of the tellurite resistance gene cluster on cell survival. The terBCDEF genes increased the survival of E. coli strain MC4100 by 13.21%, terW and terZABCDEF by 10.09%, and terWY1XY2Y3 and terZABCDEF by 25.57%, respectively. The ability to survive tellurite treatment is the most significant at 44.8% in wild clinical strain KL53 compared to laboratory strain E. coli MC4100 due to a complete wild-type plasmid presence.


Assuntos
Escherichia coli , Telúrio , Telúrio/farmacologia , Telúrio/metabolismo , Estresse Oxidativo , Família Multigênica
3.
Antibiotics (Basel) ; 12(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136701

RESUMO

Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications.

4.
J Integr Bioinform ; 20(3)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602733

RESUMO

With the rapid growth of massively parallel sequencing technologies, still more laboratories are utilising sequenced DNA fragments for genomic analyses. Interpretation of sequencing data is, however, strongly dependent on bioinformatics processing, which is often too demanding for clinicians and researchers without a computational background. Another problem represents the reproducibility of computational analyses across separated computational centres with inconsistent versions of installed libraries and bioinformatics tools. We propose an easily extensible set of computational pipelines, called SnakeLines, for processing sequencing reads; including mapping, assembly, variant calling, viral identification, transcriptomics, and metagenomics analysis. Individual steps of an analysis, along with methods and their parameters can be readily modified in a single configuration file. Provided pipelines are embedded in virtual environments that ensure isolation of required resources from the host operating system, rapid deployment, and reproducibility of analysis across different Unix-based platforms. SnakeLines is a powerful framework for the automation of bioinformatics analyses, with emphasis on a simple set-up, modifications, extensibility, and reproducibility. The framework is already routinely used in various research projects and their applications, especially in the Slovak national surveillance of SARS-CoV-2.


Assuntos
Genômica , Software , Reprodutibilidade dos Testes , Genômica/métodos , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Metab Syndr Relat Disord ; 21(5): 243-253, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083403

RESUMO

Background: Gut microbial composition seems to change in association with prediabetes. The purpose of this prospective cross-sectional study was to compare the composition of gut microbiota and energy metabolites between individuals with class III obesity but without type 2 diabetes mellitus (OB) and healthy normal weight controls. Methods: The subjects of this prospective cross-sectional study were participants recruited from a previous clinical trial (No: NCT02325804), with intervention focused on weight loss. We recruited 19 OB [mean age ± standard deviation (SD) was 35.4 ± 7.0 years, mean body mass index (BMI) ± SD was 48.8 ± 6.7 kg/m2] and 23 controls (mean age ± SD was 31.7 ± 14.8 years, mean BMI ± SD was 22.2 ± 1.7 kg/m2). Their fecal microbiota was categorized using specific primers targeting the V1-V3 region of 16S rDNA, whereas serum metabolites were characterized by nuclear magnetic resonance spectroscopy. Multivariate statistical analysis and Random Forest models were applied to discriminate predictors with the highest variable importance. Results: We observed a significantly lower microbial α-diversity (P = 0.001) and relative abundance of beneficial bacterium Akkermansia (P = 0.001) and the short-chain fatty acid-producing bacteria Eubacterium hallii (P = 0.019), Butyrivibrio (P = 0.024), Marvinbryantia (P = 0.010), and Coprococcus (P = 0.050) and a higher abundance of the pathogenic bacteria Bilophila (P = 0.018) and Fusobacterium (P = 0.022) in OB compared with controls. Notably, the Random Forest machine learning analysis identified energy metabolites (citrate and acetate), HOMA-IR, and insulin as important predictors capable of discriminating between OB and controls. Conclusions: Our results suggest that changes in gut microbiota and in serum acetate and citrate are additional promising biomarkers before progression to Type 2 diabetes. The non-invasive manipulation of gut microbiota composition in OB through a healthy lifestyle, thus, offers a new approach for managing class III obesity and associated disorders. ClinicalTrials.gov identifier: NCT02325804.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Estudos Transversais , Estudos Prospectivos , Obesidade , Bactérias/genética , Citratos
6.
Sci Rep ; 13(1): 4839, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964263

RESUMO

The genus Elaphe Fitzinger, 1833 includes 17 species of charismatic, large-sized, non-venomous, Eurasian snakes. In the Western Palearctic, the genus is represented by three species from the Elaphe quatuorlineata group ranging from the Apennine peninsula to Central Asia. The southernmost population of this group is distributed in the mountains of the Southern Levant, with more than 400 km gap to other Elaphe populations. This population has been known to science for only 50 years and is virtually unstudied due to its extreme rarity. We studied these snakes' morphological and genetic variation from the three countries where they are known to occur, i.e., Israel (Hermon, the Israeli-controlled Golan Heights), Lebanon, and Syria. We used nine mitochondrial and nuclear genes, complete mitogenome sequences, and a comprehensive morphological examination including published data, our own field observations, and museum specimens, to study its relationship to other species in the group. The three currently recognized species of the group (E. quatuorlineata, E. sauromates, E. urartica), and the Levant population, form four deeply divergent, strongly supported clades. Three of these clades correspond to the abovementioned species while the Southern Levant clade, which is genetically and morphologically distinct from all named congeners, is described here as a new species, Elaphe druzei sp. nov. The basal divergence of this group is estimated to be the Late Miocene with subsequent radiation from 5.1 to 3.9 Mya. The revealed biogeography of the E. quatuorlineata group supports the importance of the Levant as a major center of endemism and diversity of biota in Eurasia. The new species is large-sized and is one of the rarest snakes in the Western Palearctic. Because of its small mountain distribution range, in an area affected by land use and climate change, the new Elaphe urgently needs strict protection. Despite political issues, we hope this will be based on the cooperation of all countries where the new species occurs.


Assuntos
Colubridae , Animais , Filogenia , Mitocôndrias/genética , Líbano , Síria , DNA Mitocondrial/genética
7.
Front Cell Infect Microbiol ; 12: 990889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467722

RESUMO

I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.


Assuntos
Francisella tularensis , Ixodes , Microbiota , Rickettsia , Animais , Coxiella , Simbiose
8.
Biomolecules ; 12(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421701

RESUMO

The increased interest in assisted reproduction through in vitro fertilization (IVF) leads to an urgent need to identify biomarkers that reliably highly predict the success of pregnancy. Despite advances in diagnostics, treatment, and IVF approaches, the 30% success rate of IVF seems insurmountable. Idiopathic infertility does not have any explanation for IVF failure especially when a patient is treated with a healthy competitive embryo capable of implantation and development. Since appropriate intercellular communication is essential after embryo implantation, the emergence of the investigation of embryonic secretome including short non-coding RNA (sncRNA) molecules is crucial. That's why biomarker identification, sncRNAs secreted during the IVF process into the blastocyst's cultivation medium, by the implementation of artificial intelligence opens the door to a better understanding of the bidirectional communication between embryonic cells and the endometrium and so the success of the IVF. This study presents a set of promising new sncRNAs which are revealed to predictively distinguish a high-quality embryo, suitable for an embryo transfer in the IVF process, from a low-quality embryo with 86% accuracy. The identified exact combination of miRNAs/piRNAs as a non-invasively obtained biomarker for quality embryo determination, increasing the likelihood of implantation and the success of pregnancy after an embryo transfer.


Assuntos
Pequeno RNA não Traduzido , Gravidez , Feminino , Humanos , Inteligência Artificial , Transferência Embrionária , Fertilização in vitro , Biomarcadores
9.
Viruses ; 14(11)2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36423120

RESUMO

Turnip yellows virus (TuYV) is one of the most important pathogens of oilseed rape worldwide. The virus has a large host range including many crop species (e.g., oilseed rape, pea, chickpea) and weeds from more than twenty plant families. Other than oilseed rape, we detected TuYV in many commonly grown weed species that share the fields and vegetation period together with canola crops in Czech and Slovak Republics. TuYV was detected by reverse-transcription polymerase chain reaction (RT-PCR) in at least 26 species including main crop hosts (oilseed rape), intercrops and weeds such as Amaranthus retroflexus, Atriplex patula (Amaranthaceae), Arctium lappa, Lactuca serriola, Taraxacum officinale, Tripleurospermum inodorum (Asteraceae), Phacelia tanacetifolia (Boraginaceae), Brassica napus, Capsella bursa-pastoris, Descurainia Sophia, Raphanus raphanistrum, Sinapis alba, Sisymbrium officinale, Thlaspi arvense (Brassicaceae), Silene alba, Stellaria media (Caryophyllaceae), Euphorbia helioscopia (Euphorbiaceae), Geranium rotundifolium (Geraniaceae), Lamium purpureum (Lamiaceae), Fumaria officinalis, Papaver rhoeas (Papaveraceae), Veronica persica (Plantaginaceae syn. Scrophulariaceae), Fallopia convolvulus (Polygonaceae), Solanum nigrum (Solanaceae), Urtica dioica (Urticaceae) and Viola arvensis (Violaceae). The detection of TuYV was further confirmed by RT-qPCR as well as Sanger sequencing of the PCR fragments. We discovered four new weed species as hosts of TuYV such as T. inodorum, S. alba, G. rotundifolium and E. helioscopia, representing their three respective plant families. The readthrough domain (RTD) gene sequence analysis of the Czech and Slovak TuYV isolates from oilseed rape and weed species showed similar within-group nucleotide divergence (7.1% and 5.6%, respectively) and the absence of geographical- or host-based phylogenetic clustering. The high-throughput sequencing of the P. rhoeas sample enabled the obtention of a nearly complete genome of TuYV and revealed the mixed infection of TuYV with turnip mosaic virus and cucumber mosaic virus. Our results thus show that weed species are an important TuYV reservoir and play a significant role in the spread and incidence of the disease in field crops such as oilseed rape.


Assuntos
Brassica napus , Filogenia , Produtos Agrícolas , Eslováquia
10.
Vnitr Lek ; 68(E-2): 4-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36208939

RESUMO

The gut microbiome is linked to the development of individual diseases. Patients with congestive heart failure (HF) develop intestinal wall edema due to venous congestion, which impairs absorption function and allows bacterial overgrowth. Consequently, the pathogenous bacterial strains produce many harmful substances, including trimethylamine N-oxide (TMAO) and endotoxin (LPS - lipopolysaccharide), which lead to deterioration of HF. These discoveries led to hypothesis about the heart-bowel axis. High levels of TMAO present in patients with HF predispose to higher long-term mortality, even after correlation with traditional risk factors and cardiorenal indices. Most LPS is generated by the intestinal microbiome, and the osteogenic response in aortic stenosis to LPS stimulation of valve interstitial cells (VIC) is closely linked to inflammation and immunity. Thus, the concentration of intestinal microbiome research may provide new insights into the investigation of new therapeutic targets for HF and aortic stenosis.


Assuntos
Estenose da Valva Aórtica , Microbioma Gastrointestinal , Insuficiência Cardíaca , Estenose da Valva Aórtica/complicações , Microbioma Gastrointestinal/fisiologia , Humanos , Lipopolissacarídeos , Metilaminas
11.
Plants (Basel) ; 11(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807616

RESUMO

Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses.

12.
Parasitology ; 149(8): 1106-1118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35570686

RESUMO

Dibothriocephalus latus is the most frequent causative agent of fish-borne zoonosis (diphyllobothriosis) in Europe, where it is currently circulating mainly in the Alpine lakes region (ALR) and Russia. Three mitochondrial genes (cox1, cob and nad3) and 6 microsatellite loci were analysed to determine how is the recently detected triploidy/parthenogenesis in tapeworms from ALR displayed at the DNA level. A geographically distant population from the Krasnoyarsk Reservoir in Russia (RU-KR) was analysed as a comparative population. One or 2 alleles of each microsatellite locus was detected in plerocercoids from RU-KR, corresponding to the microsatellite pattern of a diploid organism. In contrast, 1­3 alleles were observed in tapeworms from ALR, in accordance with their triploidy. The high diversity of mitochondrial haplotypes in D. latus from RU-KR implied an original and relatively stable population, but the identical structure of mitochondrial genes of tapeworms from ALR was probably a consequence of a bottleneck typical of introduced populations. These results indicated that the diploid/sexually reproducing population from RU-KR was ancestral, located within the centre of the distribution of the species, and the triploid/parthenogenetically reproducing subalpine population was at the margin of the distribution. The current study revealed the allelic structure of the microsatellite loci in the triploid tapeworm for the first time.


Assuntos
Cestoides , Infecções por Cestoides , Diphyllobothrium , Animais , Cestoides/genética , Diphyllobothrium/genética , Variação Genética , Humanos , Lagos , Repetições de Microssatélites , Triploidia
13.
Biology (Basel) ; 11(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35625513

RESUMO

Gut microbiome impairment is a serious side effect of cancer treatment. The aim of this study was to identify the effects of hematopoietic stem cell transplantation (HSCT) treatment on gut microbiota composition in children with acute lymphoblastic leukemia (ALL). Fecal microbiotas were categorized using specific primers targeting the V1-V3 region of 16S rDNA in eligible pediatric ALL patients after HSCT (n = 16) and in healthy controls (Ctrl, n = 13). An intra-hospital exercise program was also organized for child patients during HSCT treatment. Significant differences in gut microbiota composition were observed between ALL HSCT and Ctrl with further negative effects. Plasma C-reactive protein correlated positively with the pathogenic bacteria Enterococcus spp. and negatively with beneficial bacteria Butyriccocus spp. or Akkermansia spp., respectively (rs = 0.511, p = 0.05; rs = -0.541, p = 0.04; rs = -0.738, p = 0.02). Bacterial alpha diversity correlated with the exercise training characteristics. Therefore, specific changes in the microbiota of children were associated with systemic inflammation or the ability to exercise physically during HSCT treatment.

14.
Sports Med Open ; 8(1): 64, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536489

RESUMO

BACKGROUND: Physical exercise has favorable effects on the structure of gut microbiota and metabolite production in sedentary subjects. However, little is known whether adjustments in an athletic program impact overall changes of gut microbiome in high-level athletes. We therefore characterized fecal microbiota and serum metabolites in response to a 7-week, high-intensity training program and consumption of probiotic Bryndza cheese. METHODS: Fecal and blood samples and training logs were collected from young competitive male (n = 17) and female (n = 7) swimmers. Fecal microbiota were categorized using specific primers targeting the V1-V3 region of 16S rDNA, and serum metabolites were characterized by NMR-spectroscopic analysis and by multivariate statistical analysis, Spearman rank correlations, and Random Forest models. RESULTS: We found higher α-diversity, represented by the Shannon index value (HITB-pre 5.9 [± 0.4]; HITB-post 6.4 [± 0.4], p = 0.007), (HIT-pre 5.5 [± 0.6]; HIT-post 5.9 [± 0.6], p = 0.015), after the end of the training program in both groups independently of Bryndza cheese consumption. However, Lactococcus spp. increased in both groups, with a higher effect in the Bryndza cheese consumers (HITB-pre 0.0021 [± 0.0055]; HITB-post 0.0268 [± 0.0542], p = 0.008), (HIT-pre 0.0014 [± 0.0036]; HIT-post 0.0068 [± 0.0095], p = 0.046). Concomitant with the increase of high-intensity exercise and the resulting increase of anaerobic metabolism proportion, pyruvate (p[HITB] = 0.003; p[HIT] = 0.000) and lactate (p[HITB] = 0.000; p[HIT] = 0.030) increased, whereas acetate (p[HITB] = 0.000; p[HIT] = 0.002) and butyrate (p[HITB] = 0.091; p[HIT] = 0.019) significantly decreased. CONCLUSIONS: Together, these data demonstrate a significant effect of high-intensity training (HIT) on both gut microbiota composition and serum energy metabolites. Thus, the combination of intensive athletic training with the use of natural probiotics is beneficial because of the increase in the relative abundance of lactic acid bacteria.

15.
Int J Antimicrob Agents ; 59(4): 106561, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35271995

RESUMO

OBJECTIVES: Hospital vancomycin-resistant Enterococcus faecium (VREfm) were evaluated in term of resistance and phylogenetic relatedness to estimate the location and possible route of transmission of resistance determinants. METHODS: Hospital VREfm (n = 49) were collected in the northern part of Slovakia during 2017-2020. The collection was analysed for the presence of the van operon and 10 representatives were subjected to whole-genome sequencing using Illumina MiSeq platform. Obtained sequences were de novo assembled and the draft genome assemblies were analysed with respect to sequence type (ST), plasmid content, resistance and virulence genes, and the phylogenetic relatedness in single nucleotide polymorphisms (SNP). RESULTS: All strains possessed the vanA operon. Ten selected evaluated isolates belonged to the clinically relevant clonal complex (CC) 17 and carried the vanHAX gene cluster conferring vancomycin resistance on mobile genetic elements, except for the isolate M17773 carrying the vanHAX gene cluster chromosomally. All isolates encoded resistance to quinolones (gyrA and parC mutations) and aminoglycosides [aac(6')-aph(2'')]. Four isolates from different wards and patients belonging to ST17 were closely related (6-50 SNP), suggesting long-term persistence of VREfm ST17 in hospital settings. CONCLUSION: VREfm proved to harbour many genetic determinants of antimicrobial resistance. The plasmids carrying the vanA genes belonged to the conjugative broad-host families Inc18 and RepA_N, posing a threat to human health, especially in hospital settings. Moreover, four clinical isolates were phylogenetically related, pointing towards stable circulation of the ST17 VREfm clone in the hospital setting and underlining the necessity for continuous surveillance of glycopeptide-resistant pathogens.


Assuntos
Infecção Hospitalar , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Proteínas de Bactérias/genética , Células Clonais , Infecção Hospitalar/epidemiologia , Infecções por Bactérias Gram-Positivas/epidemiologia , Hospitais , Humanos , Filogenia , Plasmídeos/genética , Eslováquia/epidemiologia , Vancomicina/farmacologia
16.
Front Physiol ; 12: 670989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239449

RESUMO

Regular physical activity seems to have a positive effect on the microbiota composition of the elderly, but little is known about the added possible benefits of strenuous endurance training. To gain insight into the physiology of the elderly and to identify biomarkers associated with endurance training, we combined different omics approaches. We aimed to investigate the gut microbiome, plasma composition, body composition, cardiorespiratory fitness, and muscle strength of lifetime elderly endurance athletes (LA) age 63.5 (95% CI 61.4, 65.7), height 177.2 (95% CI 174.4, 180.1) cm, weight 77.8 (95% CI 75.1, 80.5) kg, VO2max 42.4 (95% CI 39.8, 45.0) ml.kg-1.min-1 (n = 13) and healthy controls age 64.9 (95% CI 62.1, 67.7), height 174.9 (95% CI 171.2, 178.6) cm, weight 83.4 (95% CI 77.1, 89.7) kg, VO2max 28.9 (95% CI 23.9, 33.9), ml.kg-1.min-1 (n = 9). Microbiome analysis was performed on collected stool samples further subjected to 16S rRNA gene analysis. NMR-spectroscopic analysis was applied to determine and compare selected blood plasma metabolites mostly linked to energy metabolism. The machine learning (ML) analysis discriminated subjects from the LA and CTRL groups using the joint predictors Bacteroides 1.8E + 00 (95% CI 1.1, 2.5)%, 3.8E + 00 (95% CI 2.7, 4.8)% (p = 0.002); Prevotella 1.3 (95% CI 0.28, 2.4)%, 0.1 (95% CI 0.07, 0.3)% (p = 0.02); Intestinimonas 1.3E-02 (95% CI 9.3E-03, 1.7E-02)%, 5.9E-03 (95% CI 3.9E-03, 7.9E-03)% (p = 0.002), Subdoligranulum 7.9E-02 (95% CI 2.5E-02, 1.3E-02)%, 3.2E-02 (95% CI 1.8E-02, 4.6E-02)% (p = 0.02); and the ratio of Bacteroides to Prevotella 133 (95% CI -86.2, 352), 732 (95% CI 385, 1079.3) (p = 0.03), leading to an ROC curve with AUC of 0.94. Further, random forest ML analysis identified VO2max, BMI, and the Bacteroides to Prevotella ratio as appropriate, joint predictors for discriminating between subjects from the LA and CTRL groups. Although lifelong endurance training does not bring any significant benefit regarding overall gut microbiota diversity, strenuous athletic training is associated with higher cardiorespiratory fitness, lower body fat, and some favorable gut microbiota composition, all factors associated with slowing the rate of biological aging.

17.
Nutrients ; 13(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064069

RESUMO

Weight loss interventions with probiotics have favourable effects on gut microbiota composition and derived metabolites. However, little is known about whether the consumption of natural probiotics, such as Bryndza cheeses, brings similar benefits. The purpose of the study was to find the effect of short-term weight loss programs and Bryndza cheese consumption on the structure of the gut microbiota, microbiota-derived metabolites and body composition in middle-aged women. We conducted a randomised controlled intervention study. Twenty-two female participants with a body fat percentage ≥25% underwent a short weight loss program (4 weeks). Subjects were randomised to either the control or intervention group according to diet. The intervention group comprised 13 participants, whose diet contained 30 g of "Bryndza" cheese daily (WLPB). The control group comprised nine participants without the regular consumption of Bryndza cheese (WLP) in their diet. Both interventions lead to a significant and favourable change of BMI, body fat, waist circumference and muscle mass. Moreover, the relative abundance of Erysipelotrichales significantly increased in both groups. However, the relative abundance of lactic acid bacteria (Lactobacillales, Streptococcaceae, Lactococcus and Streptococcus) significantly increased only in the WLPB group. Furthermore, short-chain fatty acid producers Phascolarctobacterium and Butyricimonas increased significantly in the WLPB group. A short-term weight loss program combined with Bryndza cheese consumption improves body composition and increases the abundance of lactic acid bacteria and short-chain fatty acid producers in middle-aged women.


Assuntos
Queijo/microbiologia , Microbioma Gastrointestinal/fisiologia , Sobrepeso/terapia , Probióticos/administração & dosagem , Programas de Redução de Peso , Adulto , Índice de Massa Corporal , Dieta/métodos , Ingestão de Alimentos/fisiologia , Fezes/microbiologia , Feminino , Humanos , Pessoa de Meia-Idade , Sobrepeso/microbiologia , Avaliação de Programas e Projetos de Saúde , Resultado do Tratamento
18.
J Hazard Mater ; 417: 126049, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000701

RESUMO

To evaluate the multiplicity of reactions to toxic metalloid arsenic (As) with specific emphasis on the role of plant peroxidases, a model plant Nicotiana benthamiana was cultivated in in vitro conditions at various doses of As (applied as As5+ up to 80 µM). After 28-day cultivation, several physiological characteristics such as plant growth, photosynthetic pigment concentration, As concentration, peroxidase (POX) expression levels, and POX activity were evaluated. A newly sequenced gene for POX has been identified, that belongs to the Class III plant extracellular peroxidases, and its relationship to the genus Solanum as the most relative species has been confirmed. In the control and selected As treatments (20As, 50As, and 80As), newly identified POX expression and POX activity were continuously detected during the whole cultivation period. The plant reactions to As stress were distinguished into three groups: low As, moderate As, and high As. A tight relationship was found between the photosynthetic pigments and POX expression. Accumulation of As in roots and shoots showed correlations with POX activities. The results showed that the diversity of reactions depends on As dose and time exposure and indicate an interface of peroxidase functional role with other physiological processes in plants suffering from As toxicity.


Assuntos
Arsênio , Peroxidase , Arsênio/toxicidade , Catalase/metabolismo , Estresse Oxidativo , Peroxidase/genética , Peroxidase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Raízes de Plantas/metabolismo , Nicotiana/metabolismo
19.
PeerJ ; 9: e11197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026346

RESUMO

AIM: The study of minimal ter operon as a determinant of tellurium resistance (TeR) is important for the purpose of confirming the relationship of these genes to the pathogenicity of microorganisms. The ter operon is widespread among bacterial species and pathogens, implicated also in phage inhibition, oxidative stress and colicin resistance. So far, there is no experimental evidence for the role of the Escherichia coli (E. coli) minimal ter operon in ultraviolet C (UVC) resistance, biofilm formation and auto-aggregation. To identify connection with UVC resistance of the minimal ter operon, matched pairs of Ter-positive and -negative E. coli cells were stressed and differences in survival and whole genome sequence analysis were performed. This study was aimed also to identify differences in phenotype of cells induced by environmental stress. METHODS: In the current study, a minimal ter operon(terBCDEΔF) originating from the uropathogenic strain E. coli KL53 was used. Clonogenic assay was the method of choice to determine cell reproductive death after treatment with UVC irradiation at certain time intervals. Bacterial suspensions were irradiated with 254 nm UVC-light (germicidal lamp in biological safety cabinet) in vitro. UVC irradiance output was 2.5 mW/cm2 (calculated at the UVC device aperture) and plate-lamp distance of 60 cm. DNA damage analysis was performed using shotgun sequencing on Illumina MiSeq platform. Biofilm formation was measured by a crystal violet retention assay. Auto-aggregation assay was performed according to the Ghane, Babaeekhou & Ketabi (2020). RESULTS: A large fraction of Ter-positive E. coli cells survived treatment with 120-s UVC light (300 mJ/cm2) compared to matched Ter-negative cells; ∼5-fold higher resistance of Ter-positive cells to UVC dose (p = 0.0007). Moreover, UVC surviving Ter-positive cells showed smaller mutation rate as Ter-negative cells. The study demonstrated that a 1200-s exposure to UVC (3,000 mJ/cm2) was sufficient for 100% inhibition of growth for all the Ter-positive and -negative E. coli cells. The Ter-positive strain exhibited of 26% higher auto-aggregation activities and was able to inhibit biofilm formation over than Ter- negative strain (**** P < 0.0001). CONCLUSION: Our study shows that Ter-positive cells display lower sensitivity to UVC radiation, corresponding to a presence in minimal ter operon. In addition, our study suggests that also auto-aggregation ability is related to minimal ter operon. The role of the minimal ter operon (terBCDEΔF) in resistance behavior of E. coli under environmental stress is evident.

20.
Plants (Basel) ; 10(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921504

RESUMO

In recent years, high throughput sequencing (HTS) has brought new possibilities to the study of the diversity and complexity of plant viromes. Mixed infection of a single plant with several viruses is frequently observed in such studies. We analyzed the virome of 10 tomato and sweet pepper samples from Slovakia, all showing the presence of potato virus Y (PVY) infection. Most datasets allow the determination of the nearly complete sequence of a single-variant PVY genome, belonging to one of the PVY recombinant strains (N-Wi, NTNa, or NTNb). However, in three to-mato samples (T1, T40, and T62) the presence of N-type and O-type sequences spanning the same genome region was documented, indicative of mixed infections involving different PVY strains variants, hampering the automated assembly of PVY genomes present in the sample. The N- and O-type in silico data were further confirmed by specific RT-PCR assays targeting UTR-P1 and NIa genomic parts. Although full genomes could not be de novo assembled directly in this situation, their deep coverage by relatively long paired reads allowed their manual re-assembly using very stringent mapping parameters. These results highlight the complexity of PVY infection of some host plants and the challenges that can be met when trying to precisely identify the PVY isolates involved in mixed infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...